YOUR GLOBAL MOBILITY ENGINEERING EXPERTS

AI @ EDAG-CAE 22.04.2024

60

1

ARTIFICIAL INTELLIGENCE INSIGHTS AI

AI enables companies to develop new customer services and products, achieve competitive advantages through increased efficiency, establish data-driven decision-making, and achieve customer-centricity through personalization.

EDAG acts as the ideal development partner throughout the entire product lifecycle of the AI application. Main focus:

Computer Vision (CV)

- Enabling machines to interpret, analyze, and understand visual information such as images, videos and sensor data (f.e. LIDAR).
- → Most relevant: Image classification, object detection, object detection

Natural Language Processing (NLP)

- Ability of computer systems to understand, interpret and generate human language (spoken and written) in a way that is meaningful and useful.
- → Most relevant: Language understanding, summarization, sentiment analysis, translation

Data Analytics

- Using AI techniques to analyze large volumes of data, extract valuable insights, patterns, and trends, and make data-driven decisions.
- → Most relevant: Predictive Analytics, Customer Segmentation, Supply Chain Optimization

ARTIFICIAL INTELLIGENCE PRODUCT-PORTFOLIO FOR AI-ENGINEERING

Data Engineering

- Collection
 - Analysis & validation
 - Tool automation & scripting
 - Generation of Data
- Pre-Processing
 - Data Pruning and filtering
 - Generalization
 - Augmentation
- Transformation
 - Adaptation for the model
 - · Machine readability

Architecture Engineering

- Conception
 - Definition of basic architecture (System and SW)
 - Analysis of optimal neuronal network
 type
 - Dependence of the data for the target function
- Aggregate
 - Extension of the basic architecture
 - Merging from different intermediate layers

Net Engineering

- Optimization
 - · Hyperparameter
 - Run-time
 - Memory
 - Performance
- Compression
 - Pruning
 - Quantization
- Porting
 - Embedded
 - Real-time capability

Consulting

- Al-Assessment
 - We test and identify together with you use cases of AI in your company
 - We create an overview and potential list
- Proof-of-Concept
 - Practical first implementation of prototypical AI applications
 - Experience in dealing with AI is generated in your company

ARTIFICIAL INTELLIGENCE AI COMPETENCE SUMMARY

- Image intelligence
 - Object Detection & Tracking
 - Pose estimation
 - Image Segmentation
 - Data Fusion

Scene intelligence

- Ground Truth
- Prediction / analysis of bus communication
- Geotagged data processing

Drive intelligence

- Trajectory planning
- Route optimization
- Accelerating, breaking, steering
- Traffic flow control
- Behavior prediction

- Acoustic intelligence
 - Speech to Text to Speech (external service)

EDAG

• Sound analysis (siren etc.)

• Text intelligence

- Latent semantic analysis (LSA)
- Topic Modelling
- Sentiment Analysis
- Framing Analysis
- Text Analysis / Similarity analysis

Validation intelligence

- Virtual protection
- Scene generation
- Maneuver generation
- Process intelligence
 - Production & Logistic: Optimization, Prediction

PROJECT REFERENCES Al@EDAG

PRODUCT EXPORT

......

30,000 20,000 10,000

Protection class: vertraulich

6

Sales

FULLY AUTOMATIC RECOGNITION AND MARKING OF PAINT COAT DEFECTS

EDAG-Portfolio	Smart Factory	
Customer	Tier 1	
Project type Technical concept		
Duration	11/2019 – 03/2020	
Team Size	3 EMP	
Location	EDAG Ulm - Lindau / Production Solutions	

	5	٦
	=	
_	=	

Objective

Highlights

Tools /

Efficient, automatic and accurate recognition and marking of paint coat defects across various types of automotive interior and exterior parts.

- Fully Automatic Inspection and Marking of paint coat defects of many kinds of automotive interior and exterior parts
- Deals with surfaces from dark black matte up to high glossy and extremely reflective
- Detects defects with the help of Computer Vision Algorithms and Al
- Provides 3-dimensional location of the defect н.
- Marks defects with marking spray for quality management
- Uses several robots and a motorized production line for handling of all parts

DIFOREM – DIRT & FOG REMOVAL

EDAG-Portfolio	-Portfolio Advanced driver assistance system	
Customer	EDAG - Business unit (SW&D)	
Project type	Innovation / Research	
Duration	03/2019 – 12/2019	
Team Size	2 EMP	
Location	EDAG Lindau / Ulm	

Objective

Activities / Highlights

Realtime contamination detection, masking and reconstructing of camera pictures

- Environment and scene agnostic artifact and contamination removal
- Robust image restoration and reconstruction
- Ensures image quality and information density
- Deep Scene understanding combined with synthesized image structures for improved reconstruction

Al-Techniques:	Deep Neural Networks Partial Convolutional LSTM
Prog. Language:	Python
Software:	Nvidia Drive AGX Tensorflow Keras
Hardware:	Demonstrator Hardware NVIDIA GeForce 2080 Ti
<u>AI - Portfolio:</u>	Computer Vision 🧱 Natural Language Processing 🗮 Data Analytics

Method 1

Method 2

Impurification on lens shown as white areas

20240422_KI-CAE_EDAG_en

8

EDAG is actively researching solutions to optimize sensor data quality in real driving scenarios.

CAMPUS FREE CITY – AUTOMATED DRIVING

EDAG-Portfolio	Smart City
Customer	Government
Project type	Innovation / Research
Duration	12/2021 – 12/2023
Team Size	4 EMP
Location	EDAG Ulm/Lindau

Activities / Highlights

Tools / Technologies

ADAS function development in the overall vehicle context and real scenarios

- <u>Sensorfusion</u> of collected Data (Camera, Lidar).
- Realtime and robust <u>object detection and classification</u> of the environment and objects.
- <u>Mapping</u> of the dynamic real-world information (objects; obstacles) and the static road knowledge.
- <u>Trajectory planning</u>: Determining a safe and efficient path for the vehicle. Based on the detected objects and the map information.

	Al-Techniques:	Deep Neural Networks Decision Tree SVM Regression
	Prog. Language:	C/C++ Matlab Python
	Software:	Tensorflow Keras COCO-Database
	Hardware:	HPC HD-Camera LIDAR Sensor Canbus
•	AI - Portfolio:	Computer Vision Katural Language Processing

H.A.R.D. – HUMAN ACTION RECOGNITION AND DETECTION

EDAG-Portfolio	Advanced driver assistant system	
Customer	Customer EDAG – Business unit (SW&D)	
Project type Innovation / Research		
Duration	06/2020 – 01/2021	
Team Size	2 EMP	
Location	EDAG Ulm/Lindau	

Detection of human actions in a given video

Objective

- Recognition of 100 distinct human actions
- Fully automated inference and output video generation
- Recognition performance invariant to camera movements and scenes
- Robust accuracy even with low video resolution and quality

Technologies

•	Al-Techniques:	Deep Neural Networks SlowFast Networks
•	Prog. Language:	C/C++ Matlab Python
•	Software:	Pytorch OpenCV Tensorflow
•	Hardware:	FPGA HD-Camera NVIDIA Jetson Canbus
•	AI - Portfolio:	Computer Vision Natural Language Processing

REFERENCE : H.A.R.D. – HUMAN ACTION RECOGNITION AND DETECTION

30,000 20,000 10,000

PRODUCT EXPORT

..............

.....

20240422_KI-CAE_EDAG_en

al Release: 22.04.2024 Pro

Protection class: vertraulich

AI @ EDAG-CAE 2018 – FIRST STEPS

ARTIFICIAL INTELLIGENCE USECASES IN ENGINEERING

Our first steps in Pedpro

ARTIFICIAL INTELLIGENCE USECASES IN ENGINEERING

Design Optimization of Crash Box using Reinforcement Learning

ARTIFICIAL INTELLIGENCE USECASES IN ENGINEERING - MESHING

"Meshing" of CAD-Data with methods of image processing

ARTIFICIAL INTELLIGENCE USECASES IN ENGINEERING - MESHING

General	Training input		Input	Output
Graphic	General object	Drawing style	New general object	Final result
FEM	CAD data	Correct mesh	New CAD data	Mesh

"Meshing" of CAD-Data with methods of image processing

ARTIFICIAL INTELLIGENCE USECASES IN ENGINEERING - MESHING

EDAG

EVALUATION ASSISTANT ANOMALY DETECTION

ARTIFICIAL INTELLIGENCE IN PEDPRO – "KI CRASH"

KI CRASH OVERVIEW

KI CRASH FOCUSPOINTS DURING DEVELOPMENT

Looking for alternativ methods and algorithms -- e.g. Raytracing

- Very high lateral resolution in XY
- Functional characteristics as floats possible
- Transfer learning is available \rightarrow Optimization
- Reduced simulation times for training
- Different inputs are possible

KI CRASH EXAMPLE FOR A PREDICTION

CHILD + ADULT

Optimistic prediction Conservative prediction

Difference

EDAG

Total Results: Accuracy: 91.7 % | F1 Score: 83.2 %

KI CRASH EXAMPLE FOR A PREDICTION

an histogramm

ADULT

AI TOOLS @ EDAG *<u></u> EDAG* **ONEPAGER: PEDPRO - HEAD IMPACT** HIC 1000 HIC 618 Neural Network (High Resolution) **FEM Simulation** True Classes HIC 800 - 1199 HIC 0 - 799 HIC 1200 - 2000 **Benefits:** Time saving • VS. Simulation Computing Development \rightarrow Better and safer product → Reduced Time-to-Market \rightarrow Higher Resolution possible Weeks Days

AI TOOLS @ EDAG OUTLOOK

Success factors Usage of predecessor data Consequent data management and storage of data continuously learning Common definition of load cases between test and CAE -Pre development (modeling, labeling/naming, sensor position, ...) => consequent realization Open minded employees to detect the use cases • Usage of ongoing created data during a development Enough resources and management patience - Specific learning based on simulated variants During Availability of specialized AI experts for the mathematical -Development background Applications in small pieces instead of the total vehicle or unrealistic targets • Digital twins e.g. for maintenance => single applications/load cases e.g. ped. protection, Specific learning based on finalized product After head impact, front crash, side crash, ... development (usage)

YOUR GLOBAL MOBILITY ENGINEERING EXPERTS

AI @ EDAG-CAE 22.04.2024

1

EDAG TECH INSIGHTS: Efficient Calculation for the Euro NCAP Crash Test (edag.com)

