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About PI Probaligence

PI offers:
• Unique self-developed ML algorithms
• (Customized) software products
• Consulting
• Methods development
• Research partnerships
• Training courses for 

professionals

in the fields of design of experiment, probabilistic machine learning, stochastic 
analysis and optimization.

© PI Probaligence GmbH

Our software Stochos

03.05.2024

Web application Python module
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Excerpt of our industries

© PI Probaligence GmbH

Simulation Automotive Materials science Turbomachinery

Healthcare Sports medicine Textile industryChemicals

03.05.2024
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Since 2024 part of CADFEM Group

03.05.2024 © PI Probaligence GmbH

Since 2022 our software STOCHOS is partially
integrated in the Ansys OptiSLang

(AI+ license required)

Since 2024 PI Probaligence became part of
the CADFEM Group as partner for AI / ML 

Solutions
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Deep infinite mixture of Gaussian Processes (DIM-GP)
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Can be applied to wide range of machine learning task with only one algorithm and no settings

• Non-stationary probabilistic model

• No settings (no expert knowledge)

• Can be used for various forms of data

• Requires little data for good results

• Automatic noise handling

• Low hardware requirements (no cloud, 

data remains with the customer)

Unique combination of neural networks + Gaussian process
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Usable data with DIM-GP

• Scalars, signals, fields, tensors, images, meshes can be used as input / partially as
output:

03.05.2024 © PI Probaligence GmbH

Live FEM & CFD
SMILES

Molecule
information
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Covering the three main ML areas with one algorithm
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DIM-GP

Reinforcement learning Supervised learning

Unsupervised
learning

Control Predict

Observe

Predictive maintenance

Production line

Autonomous driving

Predict
properties



How to optimize products and 
processes with the help of ML 

most efficiently
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10

Classical data generation process

© PI Probaligence GmbH

Classical way data generation:
1. Plan all designs in advance
2. Do simulation / experiments
3. Human analyze results 

(model training)
4. If not satisfied repeat (1-3)
5. If model is good enough, use it in 

production (web app, optimization, 
sensitivity studies, …)

03.05.2024

Simulation / Experiment
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Efficient adaptive optimization / design of experiment

© PI Probaligence GmbH

Adaptive search of next optimum

03.05.2024

Single objective: search maximum of y

Multi-objective: search Pareto-frontier
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Efficient simulation / experiment replacement:

© PI Probaligence GmbH

Adaptive model improvement

Convergence
check of model

prognosis
True function

Based on model uncertainty new samples are proposed

03.05.2024
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Customer Benchmark from Bosch
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Published: https://www.ansys.com/events/wost-conference/wost-conference-presentations

Roland Schirrmacher, 
Robert Bosch GmbH

Keynote: Process and 
results of the One Click 
Optimizer benchmark at 
2023 WOST Conference
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Customer Benchmark from Bosch

03.05.2024 © PI Probaligence GmbH

Overall 6 different 
applications have 

been benchmarked
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Customer Benchmark from Bosch
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We need much less
designs than other
algorithms

We find the optimum in 
most repetitions



16

Customer Benchmark from Bosch

03.05.2024 © PI Probaligence GmbH

In 5 out of 6 
benchmarks our
Bayesian optimization
algorithm performed
best considering:
• Needed simulation

runs
• Reproducibility
• Optimal result
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Example from chemistry – metalic coating development

© PI Probaligence GmbH03.05.2024

In total 17 parameters
• 32 possible raw materials to

choose from raw materials
types (binder, addtives, flow
Additives, …)

• Concentrations
• Process parameters (spray 

parameter, speed mixer, …)

Total 5 adaptation with 3 formulations = 15 formulations

Final adaptation



Is it possible to be even more
ressource efficient?
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Multi-fidelity modeling & 
optimization
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What is multi-fidelity data?
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Low-fidelity models High-fidelity models
Fidelity spectrum

• Coarse physical resolutions
• Fast runtime
• Low cost

• Fine physical resolution
• Slow runtime
• High cost

Image source: Aydin, Roland Can, Fabian Albert Braeu, and Christian Johannes Cyron. "General multi-fidelity framework for training artificial neural networks with computational models." Frontiers in Materials 6 (2019): 61.
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What is multi-fidelity modling?

03.05.2024 © PI Probaligence GmbH

Model utilizes information from all fidelity sources and 
predicts in the highest fidelity quality

Advantages:
• Less expensive data points required
• Calibration between simulation and real experiment
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What is multi-fidelity modling?

03.05.2024 © PI Probaligence GmbH

Model utilizes information from all fidelity sources and 
predicts in the highest fidelity quality

Advantages:
• Less expensive data points required
• Calibration between simulation and real experiment

Real experimental data

Simulation data

Prediction in quality of real experiment
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Multi-fidelity optimization
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Explore in low-fidelity

Exploit in high-fidelity

In each iteration the model decides which
fidelity level is needed based on user
specified costs



Example: sound radiation of a 
stiffened plate
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Example - sound radiation of a stiffened plate

• Two use cases:
• 1 minimize maximum of the far-field sound

power level (scalar output)
• Build global accurate model to replace

simulation (signal output)

03.05.2024 © PI Probaligence GmbH
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Example - sound radiation of a stiffened plate

Input parameter Comment

R_frac Fraction of largest acoustic
wavelength

EPW Elements per wavelength

h_stiff Height of the stiffeners

t
Thickness of plate and 

stiffeners

w Width of the plate

l Length of plate

Point mass
Point mass at force excitation

node

OffsetNodeX Coordinate of force excitation
node

OffsetNodeZ
Coordinate of force excitation

node

03.05.2024 © PI Probaligence GmbH

Parameters which controll the
accuracy of the simulation (In this
example only EPW was used)
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Example - sound radiation of a stiffened plate

03.05.2024 © PI Probaligence GmbH

• Reference accuracy with EPW = 6 & R_frac = 0.25 -> Simulation time 45 
minutes

Output to be learned up to 400 discretization points

80 dB
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Example - sound radiation of a stiffened plate

03.05.2024 © PI Probaligence GmbH

• Reference accuracy with EPW = 0.5 & R_frac = 0.25 -> Simulation time 1 
minutes

Output to be learned up to 400 discretization points

75 dB
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Example - sound radiation of a stiffened plate

• The used costs for the multi-fidelity optimization are the simulation
times 1 minute & 45 minutes

03.05.2024 © PI Probaligence GmbH
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First 10 designs are start samples

Optimization use-case Low-fidelity simulation
High-fidelity simulation
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Example - sound radiation of a stiffened plate

03.05.2024 © PI Probaligence GmbH

Sensitivity analysis
Learned model for maximum far-field sound power level
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Example - sound radiation of a stiffened plate

03.05.2024 © PI Probaligence GmbH

Reference design maximum: 79 dB Optimized design maximum: 39 dB

Input parameter Value

R_frac 0.25

EPW 6

h_stiff 0.05

t 0.005

w 0.5

l 0.7

Point mass 1

OffsetNodeX 0.075

OffsetNodeZ 0.075

Input parameter Value

R_frac 0.25

EPW 6

h_stiff 0.099996

t 0.005

w 0.5

l 0.7

Point mass 1.00007

OffsetNodeX 0.075

OffsetNodeZ 0.075
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Example - sound radiation of a stiffened plate

03.05.2024 © PI Probaligence GmbH

Only high-fidelity optimization Multi-fidelity optimization

Simulationtime:
1350 minutes vs. 382 minutes

353% faster
Low-fidelity simulation
High-fidelity simulation
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Example - sound radiation of a stiffened plate

• Global modeling took 310 low-fidelity and 39 high-fidelity calculations to
obtain a good model

• Since the output consists of 400 discrete points a larger number of
training samples is needed

03.05.2024 © PI Probaligence GmbH

Global model use-case
to replace simulation

Visualization of
different training
samples
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Example - sound radiation of a stiffened plate

© PI Probaligence GmbH

Results on test data

Simulationtime:
15975 minutes vs. 2065 minutes

773% faster
03.05.2024



2D / 3D Simulation data of
parametrized and non-

parametrized geometries

03.05.2024 © PI Probaligence GmbH
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Complex physics (Google Deepmind 2020)

03.05.2024 © PI Probaligence GmbH

Sanchez-Gonzalez, Alvaro, et al. "Learning to simulate complex physics with graph networks." International conference on machine learning. PMLR, 2020.

• 14k particles
• 800 steps

• 1k particles
• 150 steps
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• 10 Million training steps on 1,000 samples

• 1,271 nodes (avg.) / 400 time steps

• 1 NVIDIA v100 GPU  training time >= 102 hours 

• 1 CPU (8 cores) training time >= 1330 hours

• RMSE 1-step prediction disp.: 0.25 x 10e-3 

3D FEM / 2D CFD (Google Deepmind 2021)

03.05.2024 © PI Probaligence GmbH

*T.Pfaff, M. Fortunato, A. Sanchez-Gonzalez, & P. Battaglia (2021). Learning Mesh-Based Simulation with Graph Networks. In International Conference on Learning Representations.

• 10 Million training steps on 1,000 samples

• 5,233 nodes / 600 time steps

• 1 NVIDIA v100 GPU  training time >= 66 hours 

• 1 CPU (8 cores) training time >= 478 hours 

• RMSE 1-step prediction: 0.314
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Geometric Deep Infinite Mixture of Gaussian Processes

03.05.2024 © PI Probaligence GmbH

Geometric DIM-GPInput ML-based predictions of
(transient) FEM / CFD results

Mesh node positions + 
initial node features / 

boundary conditions (e.g. 
stress, velocity, …) + 

optional global features
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2D / 3D transient FEM / CFD

03.05.2024 © PI Probaligence GmbH

Water

Cylinder Air Airfoil

Test d
ataColor indicates true vs. predicted stress

Metal plate

Actuator

• 3,035 training steps = 1 Epoch on 5 samples

• 1 NVIDIA 4090 GPU  training time 2 
minutes 

• 1 CPU (8 cores) training time 7 minutes

• RMSE 1-step prediction: 0.55 x 10e-4

• 30,606 training steps = 1 Epoch on 5 samples

• 1 NVIDIA 4090 GPU  training time 14 minutes 

• 1 CPU (8 cores) training time 32 minutes 

• RMSE 1-step prediction: 0.05

• 9,867 training steps = 1 Epoch on 5 samples

• 1 NVIDIA 4090 GPU  training time 5 minutes 

• 1 CPU (8 cores) training time 12 minutes

• RMSE 1-step prediction: 1.54 x 10e-3
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E-Motor Cooling

• Temperature prediction for a E-Motor based on 
different cooling channel geometries

• 5,366,013 nodes / 2,817,502 elements

• 34 training samples / 4 test samples

• Field input parameters:
• Node positions (only the non-parameterized geometry)

• Field output parameters:
• Temperature

• Training time approx. 5-6 h on a single (cheap) GPU

03.05.2024 © PI Probaligence GmbH

Complete
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Supervised learning: E-Motor Cooling

03.05.2024 © PI Probaligence GmbH

Simulation (6-10h) Prediction (30 sec)

Test designs (new cooling channel geometries)

Field Abs. Error  over all 
nodes

Rel. Abs. Error 
over all nodes [%] R2 over all nodes

Temper
ature

Mean Std Mean Std Mean Std

1.395 0.312 0.419 0.09 0.993 0.002
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Crash-test

03.05.2024 © PI Probaligence GmbH

Crash simulation

DIM-GP Prediction

0.5 h (20 cores CPU)

17.5 s (rolling prediction)

or < 1 s if training done with time step as input

Mean absolute percentage error over all 5 test designs over all 50 time steps over all nodes: 

5,73%

• 1 simulation consists of 50 time steps, 283,791 nodes per time step → 14,189,550 nodes per simulation
• Training data: 32 simulation / Test data: 5 simulation
• Training time of DIM-GP: 21 seconds
• Changing input: thickness of the shells



AI-based warpage optimization of plastic components

Automotive Front Bumper
• overall warpage reduced from 8.0 mm to 4.4 mm 

(45% improvement)

"For over 30 years, our customers have been asking for the 
perfect parameter set for their plastic component. Thanks to 
new mathematical methods, we have now created a 
development tool that calculates this parameter set.“

Stefan Vogler
Team Manager Simulation & Calculation, M.TEC ENGINEERING GmbH

High Precision Connector
• overall warpage reduced from 0.46 mm to 0.29 mm 

(36% improvement)

© PI Probaligence GmbH03.05.2024



AI-based warpage & process optimization

Support structure of the vehicle interior
• sample time 80% shorter
• greatly reduced material and energy consumption
• elimination of tool changes

03.05.2024 © PI Probaligence GmbH
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Multiscale simulation (ongoing research project with DLR & SGL Carbon)

03.05.2024 © PI Probaligence GmbH

• Macro scale FEM:
• Deformation
• Temperature

• Micro scale FEM:
• Material tensor

• Model learns to predict
the material tensor
based on temperature
from macro scale

• Macro and micro scale
should be replaced by
ML model to speed up
calculations

• Trained model on cube
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Multiscale simulation (ongoing research project with DLR & SGL Carbon)

• Trained model on cube has been used on a c-beam geometry

03.05.2024 © PI Probaligence GmbH
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Combination of multi-fidelity + 2D / 3D Simulation data

03.05.2024 © PI Probaligence GmbH

Model utilizes information from all fidelity sources and 
predicts in the highest fidelity quality

Days
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Minutes
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Highest fidelity level

Save time and resources to train the model with mostly low-
fidelity data and only a few expensive high fidelity simulations
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Simple to use

• DIM-GP has no settings except a few options which might speed things
up or for noisy data handling

• It is practically independent of the use case, simply enter data and start 
model training

• In Python it’s as easy as this:

03.05.2024 © PI Probaligence GmbH

Placeholder for loading & preprocessing training data

Initial model and just pass training data no settings needed

Predict new data
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Key findings

• Adaptive data generation for training ML models is always preferable to a large Design 
of Experiment (DoE)

• If simulation / experiment is too complex / expensive, direct ML-driven optimization 
can be an alternative that already delivers very good results with less than 20 designs 
(even for high-dimensional problems)

• Multi-fidelity modeling / optimization allows to generate data even more efficiently 
because even fewer resources have to be used, such as simulation times, which can be 
extremely reduced

• It is also suitable for simulation calibration (combination of simulation and real 
experiment), especially if precise simulation calibration is not possible

• DIM-GP is a ML algorithm for domain experts of different fields to use this potential 
without the need of most of the ML-releated expert knowledge and it can be used in 
nearly all ML-related areas

• No cloud computing / no expensive hardware / no large amounts of data required for 
training

• Additional tools for data generation / optimization / sensitivity analysis all in one
package everything perfectly matched

• Easy integration in existing workflow since it‘s a Python library

03.05.2024 © PI Probaligence GmbH
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Contact
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Dr.-Ing. Kevin Cremanns
kevin.cremanns@probaligence.de
www.probaligence.de


