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About Pl Probaligence

Pl offers:

 Unique self-developed ML algorithms Our software Stochos
(Customized) software products

Web application Python module

L]
« Consulting
from stochos.bayesian_optimization import bayesian_opt
2 from stochos.plot import plot_scatter_mat, plot_sensitivity
o M th d d l p I 'l t from stochos.dimgp import dimgp_regr, pam_regr
e O S eve O e n from stochos.sensitivity import sobol_indices
import numpy as np

Research partnerships |

f """Define parameter bounds and type (continous “c”, discrete "d"). We use
| | 15 -20% based on reference design"""

Tralning courses for
professionals

eference_design = [45, 5, 6, 3, 60, 6, 35, 35, 35, 35, 35, 10, 10, 10, 10 ,10]
nas =

d
tmp_val = reference_desién[i]
bounds.append([tmp_val*@.8, tmp_val*1.2])

"""Define objective, minimization is assumed"""

)z
models[i].predict(x, CI=0.6827)

in the fields of design of experiment, probabilistic machine learning, stochastic
analysis and optimization.
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Excerpt of our industries

Automotive Materials science Turbomachinery

»f‘

“’l! d

li

Healthcare Chemicals Sports medicine Textile mdustry
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Since 2024 part of CADFEM Group

Since 2022 our software STOCHOS is partially Since 2024 Pl Probaligence became part of

integrated in the Ansys OptiSLang
(Al+ license required)

What's New

Set up and run simulations in Ansys or a wide range of industries and

applications faster and easier than ever before with new multiphysics capabilities,

performance improvements and dynamic collaboration updates.

H

SpaceClaim

&
B ovn §

ModelCenter LS-DYNA Output

Orchestrate and Automate
with New Nodes

Engineers can create sophisticated toolchains using
the new nodes for
SpaceClaim, Nastran and Ansy
improved nodes for An
rkbench,

03.05.2024

improvement

New Partnership with
Probaligence GmbH

Ansys optiSLang continues to deliver the best of
design understanding and optimization algorithms
through a partnership with Probaligence, which
provides Al/ML technology to increase the breadth
of state-of-the-art optimization.

ptiSLang App Test Run
Perform local optiSLang App Test-Run

= Test-Run
Perform local optiSLang App Test-Run

Desktop Apps from
optiSLang’s App Generation
Wizard

Simulation and optimization experts can build
automated workflows, create apps from these
automations, and test their apps locally on a
desktop before deploying.

© PI Probaligence GmbH

the CADFEM Group as partner for Al / ML
Solutions

01/31/2024

Al for efficient simulation: PI
Probaligence becomes part of the
CADFEM Group

CADFEM has brought Pl Probaligence GmbH on board
as a partner with outstanding solutions and expertise
to provide customers with targeted support as they

move into the world of Al.



Deep infinite mixture of Gaussian Processes (DIM-GP)

Can be applied to wide range of machine learning task with only one algorithm and no settings

Correlation Clovaaies
functions

length- | « Non-stationary probabilistic model

scales

 No settings (no expert knowledge)

« Can be used for various forms of data

Covariance matrices

« Requires little data for good results

« Automatic noise handling

Non-stationary Gaussian process

. « Low hardware requirements (no cloud,
Noise level r
# data remains with the customer)

Prediction of distribution
(mean is used typically)

Unique combination of neural networks + Gaussian process
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Usable data with DIM-GP

* Scalars, signals, fields, tensors, images, meshes can be used as input / partially as
output:

ROLLS
Multiplikative Verkniipfung: ca. 10'® Berechnungen

| | w IR

ROYCE
~10*
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120375 .375 605 . 5 25 .3629
132075 115 - 905 - 32653 19 = Aufruf von FE-Modellen auf der néchst niedrigeren Ebene

= Berechnung des Verhaltens mit analytischen Gleichung auf der
elementaren (untersten) Mikro-Ebene

g

Srazrix (X P)

Live FEM & CFD DLR

» sgl carbon

Molecule
information

\ / 20 input field with 4 channels: 3D output field with 4 channels.
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Covering the three main ML areas with one algorithm

Reinforcement learning

Autonomous driving ™

* Medium-to-large models, dat:

. Image, video prm:essmg
n CUDA or OpenCL

Control Predict

l Observe

Supervised learning

Predict
properties

Unsupervised
learning

Predictive maintenance

- COCEOEED
N

03.05.2024
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Classical data generation process

Simulation / Experiment

Classical way data generation: Q
@ o ol

3. Human analyze results

1. Plan all designs in advance - ~
2. Do simulation / experiments w 5 |__:|= 5 E é b e &) [ Resutts
Design plan
(model training) A gg p UNNEEE @\

4. If not satisfied repeat (1-3) \
5. If model is good enough, use it in v
production (Web app’ optimization, Experiments failed :€ =€
sensitivity studies, ...) i "0 [Satisfied?
Not achieving the desired results € =€ \L yes

Finished

03.05.2024 © PI Probaligence GmbH 10



Efficient adaptive optimization / design of experiment

Adaptive search of next optimum Single objective: search maximum ofy
. goTTTITTTTIIERR R s s annnmmnn . . Iteration 1 08 Acquisition function

: Less (falled) experlments' E Noise-free objective i ' Acq. function i
. Faster results = more projects in the same time! : BB —— Surrogate function 0.7 1 !
: Save time, money, materials, ... ; R % hoisy samples 0.6-
Task descrlptlon ------------------------------------------------------------------- ' || L |
Full automatic loop _— . :
.............................................................................................................. . > 04 /, \\ S G E 0.4 i
E Lab / Simulation @ —nd il e \‘i " 03]
: (7 o \‘i 1 |
e.g. 10 samples ——— : i o /
. 0 =59 1 0.1 A 1
: | b E ! !
> L E “ —> | Results ~a - - Ho 00l " .1 ;

N~ Design plan
Multi-objective: search Pareto-frontier

Proposal of X new

samples based on : “1
model uncertainity / TTTTT TS Tt -----—-E——-b #1\ |
highest potential o : 30
Converged? N )
Learns from failed experiments and avoids them . :
.............................................................................................................. 154 ~

l yes 10 +

Finished y

03.05.2024 © PI Probaligence GmbH 1



Efficient simulation / experiment replacement:

Adaptive model improvement

300
250

Convergence
check of model

= True function
prognosis ’

-50

20 40 60 80 100 120
Samples

Based on model uncertainty new samples are proposed

03.05.2024 © PI Probaligence GmbH 12



Customer Benchmark from Bosch

Roland Schirrmacher,
Robert Bosch GmbH

Keynote: Process and
results of the One Click
Optimizer benchmark at
2023 WOST Conference

Selection of Optimization Algorithms
Algorithms inside optiSLang and from external sources

= Nature Inspired Optimization Algorithms = S|IGOPT (SIGOPT)
— Evolutionary Algorithm (EA) — Mixture from global and Bayesian optimization

— Particle Swarm Optimization Algorithms (PSO) from the company Intel

= Adaptive Optimization Algorithms = Black Box Optimization from Bosch (BCAI)

— Adaptive Single-Objective Optimization Algorithm (ASQ) — Space Filling by Sobol-Sequences

— Adaptive Multi-Objective Optimization Algorithm (AMO) — MBORE: Multi-objective Bayesian
Optimization by Density-Ratio Estimation

— Adaptive Metamodel of Optimal Prognosis (AMOP)

— Bayesian Optimization (BO) = CR optimizer from Bosch (CROPT)
— NSGA Il algorithm

— Special features, not suitable for that
benchmark

= Hybrid Optimization Algorithms
— One Click Optimization Algorithm (OCO)

5 CR/AMES | 2023-06-22 BOSCH

Published: https://www.ansys.com/events/wost-conference/wost-conference-presentations

03.05.2024
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Customer Benchmark from Bosch

Examples for Multi-Objective-Optimization Examples for Multi-Objective-Optimization
Acoustic Properties in Gear Simulation Performance of an eMachine

= The NVH behaviour of gear systems also depends on
the micro geometry.

* The geometry of the eMachine has 27 parameters. Two parameters
have discrete values

Criteria

Nome Type

= 16 design variables of the micro geometry were used = P :number of pole pairs St Cont (Chiocti.

to calculate 32 response variables based on different
loading conditions.

- q: slots per pole per phase

* No geometry check was taken into account.

The original optimization problem consists of two objective .

= The 32 response variables were used to define fiiFictioRs 8Rd 9 ConEtFaiit
uncti a ints.

— 2 objective functions to minimize

Because the calculation of the hypervolume does not allow
negative values for the objective function which comes from the
maximization of the maximum power, an offset of 220 was selected
and a minimization of the difference to 220.

— 4 constraints

Hypervolume:v = 1134.6 = 30 optimization runs were performed.
Hypervolumereferenz:rf1l =3 r i i i
rf2 = 8500 Hypervolume: v = 12807.0

Hypervolumereferenz: mat_Cost = 120
P_max = 220

Overall 6 different “’ o BOSCH BOSCH

appllcatlons have Example for Single-Objective-Optimization | Examples for Multi-Objective-Optimization
been benchmarked RC15: Speed reducer Performance for an eDrive

= The speed reducer is an official benchmark example
for real-world applications.

* The geometry of the eDrive has 21 parameters. Four parameters have discrete
values
— Magnet_Material
— Wire_Selector_X1
gt Minimize: - Do_Skew

@) = 0.7854x3x,(14.9334x, — 43.0934 + 3.3333:2) — Wire_Selector_X2

= The optimization is a problem with 7 continuous
design variables and 11 constraints.

= The optimum is

— £=2999.17063

— X7 =5.28636135
— X6 =3.34996302
- x5=7.73038815
— x4 =7.30199647
— x3=17.0183333
— x2=0.700166667

+0.78540xg2 + xyxd) — 1,508, (2 +x2) + 747703 +x2)

The original optimization problem consists of 15 objective functions
with bounds: and 11 constraints, which was modified to 2 objective functions and
07 <x; £08.17 < x; <2826 <x; < 36, 17C0nStl’a|ntS.

5<x; €55.7.3<x5.x, <83,29< x; <3.9.

= 10857\/157 5% 10° + 45wy 15 7~ 850 5 0. Because the calculation of the hypervolume does not allow negative
n-4050 values for the objective function which comes from the maximization
+550 of the torque (Trq_WP1), an offset of 7 was selected and a

' -120 minimization of the difference to 7.

Hypervolume: v = 13.497

Hypervolumereferenz:
— x1=3.50246144 £10D = 1.5~ x4 +1.950 = 40 optimization runs were performed. obj cost indicator= 10
CAves | 30230822 R BOSCH cxiaves | warona 01)]_ Tl'(]_ wrPi1=7 BOSCH

03.05.2024 © PI Probaligence GmbH



Customer Benchmark from Bosch

Example for Single-Objective-Optimization
RC18: Results — setting_300_90_300 400

L. . . Result: OptimumDiff Result: NumDesigns
» The best optimizer is again BO. + Reference value > TReference value +

= The OCO performs much better i
with the double number of
designs (200 = 400).

All other algorithms do not find
the optimum well.

AMOP  ASO BO ASO

03.05.2024 © PI Probaligence GmbH



Customer Benchmark from Bosch

In5out of 6
benchmarks our
Bayesian optimization
algorithm performed
best considering:
Needed simulation
runs
Reproducibility
Optimal result

03.05.2024

Benchmark of One-Click-Optimizer
Summary

An automatic workflow could be established to benchmark different optimization algorithms.

The integration of optiSLang-external algorithms is quite difficult. Several interfaces in Python were necessary
to create the required files. Sometimes the OutputSlots like Ocriteria were used and sometimes the export of
parameters/criteria via .csv format. It could be clarified whether a custom integration is a better approach.

The adaptive and hybrid optimization algorithms showed the best performance. Often, the PI-BO showed the
best results, but requires a long computation time. Perhaps the integration of PI-BO in optiSLang could be
improved e.g. parallel training of criteria.

The nature inspired optimization algorithms EA & PSO showed similar results, but they need much more
designs for a good solution.

The One Click Optimizer OCO does not show the best solution for all applications, but the OCO belongs to the
better optimization algorithms.

There are ideas to couple several methods sequentially to get better optimization results.

© PI Probaligence GmbH



Example from chemistry — metalic coating development

Total 5 adaptation with 3 formulations = 15 formulations

In total 17 parameters

« 32 possible raw materials to
choose from raw materials
types (binder, addtives, flow
Additives, ...)

« Concentrations

« Process parameters (spray
parameter, speed mixer, ...)

03.05.2024 © PI Probaligence GmbH 17









What is multi-fidelity data?

Fidelity spectrum - -
Low-fidelity models | <« » | High-fidelity models

« Coarse physical resolutions « Fine physical resolution
 Fast runtime + Slow runtime
« Low cost  High cost

—

Image source: Aydin, Roland Can, Fabian Albert Braeu, and Christian Johannes Cyron. "General multi-fidelity framework for training artificial neural networks with computational models." Frontiers in Materials 6 (2019): 61.

03.05.2024 © PI Probaligence GmbH 20



What is multi-fidelity modling?

03.05.2024

Model utilizes information from all fidelity sources and
predicts in the highest fidelity quality

Advantages:
 Less expensive data points required
« Calibration between simulation and real experiment

© PI Probaligence GmbH
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What is multi-fidelity modling?

Real experimental data Model utilizes information from all fidelity sources and
K predicts in the highest fidelity quality

Prediction in quality of real experiment

Simulation ta

1

Advantages:
 Less expensive data points required
« Calibration between simulation and real experiment

03.05.2024 © PI Probaligence GmbH 22



Multi-fidelity optimization

...................................................................

Less (failed) experiments!

2 : Faster results = more projects in the same time! . .
' Save time, money, materials, ... : EXp lore in low-fidellty
Task description ECTCTTERRPRPRRRS L PRTTTTEEEEOERPPPPEEEOOR 7
B o . Low and High ety Models
Lab / Simulation Predicted LF
o @ML ' —— Predicted HF
e.g. 10 samples .o. e jj ~—- TruehHF
Bl Hgx %
ML > > ~ ——> | Results
A Design plan J ;
Proposal of X new 2 € |
samples based on
model uncertainity / J
highest potential o /
Converged? | :
Learns from failed experiments and avoids them ' =5 1 p
Vyes 0.0 0.2 0.4 0.6 0.8 1.0
Finished x
In each iteration the model decides which
fi i v i n n r ° ° ) °
delity level is needed based on use Exploit in high-fidelity
specified costs
03.05.2024 © PI Probaligence GmbH 23






Example - sound radiation of a stiffened plate

 TWO use cases:

* 1 minimize maximum of the far-field sound
power level (scalar output)

+ Build global accurate model to replace
simulation (signal output)

- A C - 5]
: 5 moncrcomes
2 g 2 g Engineering Data " ,——— 8@ 2 g Engineering Data 4 2 g Engineering Data g
A W g——m3 [Z] Geometry 3
W a4 @ Model

-
1

v .
v 4
>3 [:i;«‘ Parameters >3 [:i;«‘ Parameters

v
v

v

v o4 =5 | @ ) i ) v
' v

v

Maodal Harmonic Structure

['pj Parameter Set
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Example - sound radiation of a stiffened plate

R_frac Fraction of largest acoustic Parameters which controll the
wavelength accuracy of the simulation (In this
EPW Elements per wavelength example only EPW was used)

h_stiff Height of the stiffeners

Thickness of plate and

L stiffeners

w Width of the plate
| Length of plate

Point mass at force excitation

Point mass
node

Coordinate of force excitation

OffsetNodeX
node

Coordinate of force excitation

OffsetNodeZ
node

03.05.2024 © PI Probaligence GmbH 26



Example - sound radiation of a stiffened plate

« Reference accuracy with EPW =6 & R_frac = 0.25 -> Simulation time 45
minutes

Output to be learned up to 400 discretization points

03.05.2024 © PI Probaligence GmbH 27



Example - sound radiation of a stiffened plate

« Reference accuracy with EPW = 0.5 & R_frac = 0.25 -> Simulation time 1
minutes

Output to be learned up to 400 discretization points

03.05.2024 © PI Probaligence GmbH 28



Example - sound radiation of a stiffened plate

« The used costs for the multi-fidelity optimization are the simulation
times 1 minute & 45 minutes
First 10 designs are start samples

E Low and High Fidelity Models
© 1400 e
T L —— Predicted HF F(x)
g 65 - 1200 - Optimum
Q ® High-fidelity sample
- i 1000 -
5 60
% X 800
Q. 557 y
© *5 600
c O
> 501
8 400
g 437 200 :
r/
= N —o—o——0—0——__ I
o 40 - 0
x I
g 0.01 0.02 0.03 0.04 0.05 1 E 5 7 9 11
Design no.
T PN _ . . . .
Optimization use-case e Low-fidelity simulation

High-fidelity simulation
03.05.2024 © PI Probaligence GmbH 29



Example - sound radiation of a stiffened plate

Sensitivity analysis :
Learned model for maximum far-field sound power level

PAM for maximum far-field sound power level not estimated

0.4 0.6 0.8 1.0

0.0 0.2
Importance

maximum far-field sound power leve|

Contour Plot of maximum far-fi

0.05

0.01 0.02 0.03 0.04 0.05
03.05.2024 © PI Probaligence GmbH 30



Example - sound radiation of a stiffened plate

Reference design maximum: 79 dB Optimized design maximum: 39 dB

——8—— Fernfeld-Schalllsistungspegel —a&—— Fernfeld-Schallleistungspegel
79,354 38,631 o
30,
70,
20,
g —
= @
260, =
i £
g £
E &
= -2 10,
2 R_frac 0.25 "
3 H
5 2
2 EPW 6 3 R_frac 0.25
£ =
£ h_stiff 0.05 3 EPW 6
t 0.005 £ h_stiff 0.099996
o
w 0.5 t 0.005
L 0.7 w 0.5
an Point mass 1 L 0.7
OffsetNodeX 0.075 Point mass 1.00007
-10,
OffsetNodezZ 0.075 OffsetNodeX 0.075
OffsetNodez 0.075
32,185
100, 125, 250, 375, 500, 625, 750, 875, 1000,
Frequenz (Hz) 19,408
100, 125, 250, 375, 500, 625, 750, a75, 1000,
Frequenz (Hz)
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Costs / F(x)

Example - sound radiation of a stiffened plate

Only high-fidelity optimization

Multi-fidelity optimization

1400 - i 1400 i
| vd |
' P
P optimum | v 1200 — =~ Optimum
® High-fidelity sample : 4 ® High-fidelity sample
1000 | 1000
800 /5, g 800
vdR 2
600 // @ 600
% @]
-
400 400 -9 |
v - 1904
A 4]
200 /r/ 200 /:
1 " :
. 1 . L ¢-0-90-0-0-0-0 009001000009
| |
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Design no. Design no.
Simulationtime:
1350 mlnutei v:. 382 minutes e Low-fidelity simulation
353% faster High-fidelity simulation
03.05.2024 © PI Probaligence GmbH 32



Example - sound radiation of a stiffened plate

« Global modeling took 310 low-fidelity and 39 high-fidelity calculations to
obtain a good model

« Since the output consists of 400 discrete points a larger number of
training samples is needed

60

w
o
1

Visualization of
«— different training
samples

o
(=
1

Global model use-case
to replace simulation

W
(=)
1

Sound power level [dB]
N
(=)

[
o
1

o

200 400 600 800 1000
Frequency [Hz]
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Example - sound radiation of a stiffened plate

Sound power level [dB]

— True
Predicted

|

I

N

60

55

45

V

0

50 100 150 200 250 300 350 400

Frequency [Hz]

e

i

___
|

W

[l

Y

0

50

100

150 200 250 300 LY 400

Frequency [Hz

03.05.2024

1

Sound power level [dB]

Results on test data

’ n A
\ . A
. \
=)
/ 2 A A
35 T 40
H . \
@
El 3
o
o 30
=
5
25 // 3 /
20
20 /
15 - T
0 50 100 150 200 250 300 350 400 ] 50 100 150 200 250 300 350 400
Frequency [Hz] Frequency [Hz]
60
A /\\/ 50 Il
g \ U _ 45
= =)
[ =l
& =
< 40 40
g N : /\
=]
2 . VA
B A
5 30 = , . /\/
2
[0l
/ 30
A \.—\J
20
25 1

0

50

100

20

150 200 250 300 350 400

Frequency [Hz] ] 50 100 150 200 250 300
Frequency [Hz]

350 400

Simulationtime;
15975 minutes vs. 2065 minutes
773% faster

© PI Probaligence GmbH

Sound power level [dB]
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Complex physics (Google Deepmind 2020)

Prediction
GNS

Ground truth Prediction

* 14k particles 1k particles
* 800 steps * 150 steps

Sanchez-Gonzalez, Alvaro, et al. "Learning to simulate complex physics with graph networks." International conference on machine learning. PMLR, 2020.

03.05.2024 © PI Probaligence GmbH 36



3D FEM / 2D CFD (Google Deepmind 2021)

Ground truth Prediction

Ground truth Prediction mach number 0.66
angle of attack -22.3

x-velocity [m/s]

10 Million training steps on 1,000 samples
5,233 nodes / 600 time steps
1 NVIDIA v100 GPU training time >= 66 hours

10 Million training steps on 1,000 samples

1,271 nodes (avg.) / 400 time steps
1 NVIDIA v100 GPU training time >=102 hours

1 CPU (8 cores) training time >= 478 hours
RMSE 1-step prediction: 0.314

1 CPU (8 cores) training time >= 1330 hours

RMSE 1-step prediction disp.: 0.25 x 10e-3

*T.Pfaff, M. Fortunato, A. Sanchez-Gonzalez, & P. Battaglia (2021). Learning Mesh-Based Simulation with Graph Networks. In International Conference on Learning Representations.

03.05.2024 © PI Probaligence GmbH 37



Geometric Deep Infinite Mixture of Gaussian Processes

Input Geometric DIM-GP ML-based predictions of
(transient) FEM / CFD results

Mesh node positions +
initial node features /
boundary conditions (e.g.
stress, velocity, ...) +
optional global features ‘

03.05.2024 © PI Probaligence GmbH 38



2D / 3D transient FEM / CFD

\‘}“"d_e;»

Ground truth: Step 0 x velocity (m/s)

(m/s)
200

Ground truth St X velo

100
o
—100

edicio Step O xvelo (m/s)
s
: VAV .. 100
v : o
Vas VAVA VAV —~100

Prediction

Error: (Prediction - Ground truth) Step O

(m/s) iction - Step [0} x veloc! ém/s)

0.005 e

0.000 0.0

—0.005

~0.010
* 9,867 training steps = 1 Epoch on 5 samples * 30,606 training steps = 1 Epoch on 5 samples
* 1 NVIDIA 4090 GPU training time 5 minutes * 1 NVIDIA 4090 GPU training time 14 minutes
* 1 CPU (8 cores) training time 12 minutes * 1 CPU (8 cores) training time 32 minutes

* RMSE 1-step prediction: 1.54 x 10e-3 * RMSE 1-step prediction: 0.05

03.05.2024 © PI Probaligence GmbH

Actuator

Metal plate ——

Ground truth: Step 0

Prediction: Step 0O

Color indicates true vs. predicted stress

elep 1so]

* 3,035 training steps = 1 Epoch on 5 samples

* 1 NVIDIA 4090 GPU training time 2
minutes

* 1 CPU (8 cores) training time 7 minutes

*  RMSE 1-step prediction: 0.55 x 10e-4
39



E-Motor Cooling

Complete

« Temperature prediction for a E-Motor based on
different cooling channel geometries

« 5366,013 nodes / 2,817,502 elements
34 training samples [ 4 test samples

 Field input parameters:
« Node positions (only the non-parameterized geometry.

 Field output parameters:
 Temperature

- Training time approx. 5-6 h on a single (cheap) GPU

03.05.2024 © PI Probaligence GmbH 40



Supervised learning: E-Motor Cooling

Test designs (new cooling channel geometries)

Simulation (6-10h) Prediction (30 sec)

3.6e+02 3.60+02
— as5
S | — — 350 {

W W w
358
temperature

0w ww
SRRSO
[R-RR-]
temperature
wwwww
228838
Sodand
temperature
LeB8e
Sa3R8
lemperature_predicted

Temper  Mean Std Mean Mean Std
ature 1.395 0.312 0.419 0.993 0.002

03.05.2024 © PI Probaligence GmbH
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Crash-test

 1simulation consists of 50 time steps, 283,791 nodes per time step = 14,189,550 nodes per simulation
« Training data: 32 simulation / Test data: 5 simulation

 Training time of DIM-GP: 21 seconds

« Changing input: thickness of the shells

17.5 s (rolling prediction)
or <1 s if training done with time step as input

DIM-GP Prediction

Crash simulation 0.5 h (20 cores CPU)

Mean absolute percentage error over all 5 test designs over all 50 time steps over all nodes:

03.05.2024 © PI Probaligence GmbH 42



Al-based warpage optimization of plastic components

Automotive Front Bumper

 overall warpage reduced from 8.0 mm to 4.4 mm
(45% improvement)

High Precision Connector

« overall warpage reduced from 0.46 mm to 0.29 mm
(36% improvement)

"For over 30 years, our customers have been asking for the
perfect parameter set for their plastic component. Thanks to
new mathematical methods, we have now created a
development tool that calculates this parameter set.”

Stefan Vogler
Team Manager Simulation & Calculation, M.TEC ENGINEERING GmbH
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Al-based warpage & process optimization

Support structure of the vehicle interior

« sample time 80% shorter

 greatly reduced material and energy consumption
 elimination of tool changes
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Multiscale simulation (ongoing research project with DLR & SGL Carbon)

* Macro scale FEM:
. Deformation AP2.1 Parametrische FE-Modelle auf allen Ebenen

. Temperature Beispielsimulation Input Ki-Modell

 Micro scale FEM;

. Materialtensor
 Material tensor

» Als Datenbasis wird der Materialtensor
(Output) gewahlt, welche von der Temperatur
(Input) abhangig ist.

« Model learns to predict
the material tensor
based on temperature
from macro scale

169524  76592.4  77392.1  —20.0479 —6.02169 —
O A cOE rd ] b —1 =4 1 Q

« Macro and micro scale
should be replaced by
ML model to speed up
calculations

« Trained model on cube Simulationsergebnis Multiskalensimulation [DLR-SG]

Kopplung b2000++pro - STOCHOS, DLR-SG, 29.04.2024
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Multiscale simulation (ongoing research project with DLR & SGL Carbon)

« Trained model on cube has been used on a c-bheam geometry

AP2.1 Parametrische FE-Modelle auf allen Ebenen ,_#7 AP2.1 Parametrische FE-Modelle auf allen Ebenen #
Beispielsimulation Validierung Kil-Modell DLR DLR

Beispielsimulation Validierung Kl-Modell
Verteilung der Verschiebungen u, Verteilung der mechanischen Spannungen S;;

Ergebnis Multiskalensimulation Ergebnis KI-Modell Ergebnis Multiskalensimulation Ergebnis KI-Modell

Abweichung der max. 4 Abweichung der max.
Verschiebungen u,: ' | Spannungen S;:
0,15 % | & 3 0,037 %
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Combination of multi-fidelity + 2D / 3D Simulation data

Model utilizes information from all fidelity sources and
predicts in the highest fidelity quality

Highest fidelity level

Increasing accuracy

Save time and resources to train the model with mostly low-
fidelity data and only a few expensive high fidelity simulations
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Simple to use

« DIM-GP has no settings except a few options which might speed things
up or for noisy data handling

« It is practically independent of the use case, simply enter data and start
model training

* In Python it's as easy as this:

from stochos.dimgp import dimgp_regr
import numpy as np

y —

Y

np.load( "mesh_boundary.csv")

np. load( "node_results.csv") — Placeholder for loading & preprocessing training data

—

—_

model = dimgp_regr()

— Initi ] inin n ings n
nodel.fit(X, Y, batch_size=500) | Initial model and just pass training data no settings needed

Y_pred = model.predict(X) } Predict new data
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Key findings

« Adaptive data generation for training ML models is always preferable to a large Design
of Experiment %DOE)

« If simulation / experiment is too complex / expensive, direct ML-driven optimization
Ean be an alternative that already delivers very good results with less than 20 designs
even for high-dimensional problems

« Multi-fidelity modeling / optimization allows to generate data even more efficiently
because even fewer resources have to be used, such as simulation times, which can be
extremely reduced

* Itis also suitable for simulation calibration (combination of simulation and real
experlmentS, especially If precise simulation calibration Is not possible

« DIM-GP is a ML algorithm for domain experts of different fields to use this potential
without the need of most of the ML-releated expert knowledge and It can be used In
nearly all ML-related areas

. !C\Io,cl,oud computing / no expensive hardware / no large amounts of data required for
raining

« Additional tools for data generation / optimization / sensitivity analysis all in one
package everything perfectly matched

« Easy integration in existing workflow since it's a Python library
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Contact

Dr.-Ing. Kevin Cremanns
kevin.cremanns@probaligence.de
www.probaligence.de

.” PROBABILISTIC INTELLIGENCE
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