K

Universal Machine Learning based on Probabilistic Intel/igence

Authors: Dr. Kevin Cremanns* Date: 03.05.2024

*Co-founder & responsible for research PI Probaligence GmbH

CADFEM GROUP

Introduction

About PI Probaligence

PI offers:

- Unique self-developed ML algorithms
- (Customized) software products
- Consulting
- Methods development
- Research partnerships
- Training courses for professionals

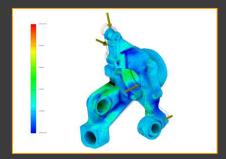
Python module Web application from stochos.bayesian optimization import bayesian opt from stochos.plot import plot_scatter_mat, plot_sensitivity from stochos.dimgp import dimgp regr, pam regr from stochos.sensitivity import sobol_indices import numpy as np import pandas as pd """Define parameter bounds and type (continous "c", discrete "d"). We use 15 here +-20% based on reference design"" 16 reference_design = [45, 5, 6, 3, 60, 6, 35, 35, 35, 35, 35, 10, 10, 10, 10, 10, 10 bounds = [] for i in range(len(reference design)): tmp_val = reference_design[i] bounds.append([tmp_val*0.8, tmp_val*1.2]) types=["c"]*16 """Define objective, minimization is assumed""" def objectives(x,models): objs, lcbs = [],[] for i in range(len(models)): y pred, 1 cb, u cb= models[i].predict(x, CI=0.6827) if i == 0

Our software Stochos

in the fields of design of experiment, probabilistic machine learning, stochastic analysis and optimization.

03.05.2024

Excerpt of our industries



Simulation

Automotive

Materials science

Turbomachinery

Healthcare

Chemicals

Sports medicine

Textile industry

Since 2024 part of CADFEM Group

Since 2022 our software STOCHOS is partially integrated in the Ansys OptiSLang (AI+ license required)

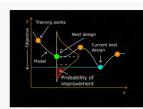
/ What's New

Set up and run simulations in <u>Ansys Discovery</u> for a wide range of industries and applications faster and easier than ever before with new multiphysics capabilities, performance improvements and dynamic collaboration updates.

ModelCenter LS-DYNA Output

Orchestrate and Automate with New Nodes

Engineers can create sophisticated toolchains using the new nodes for <u>Ansys LS-Dyna</u>, <u>Ansys</u> <u>SpaceClaim</u>, Nastran and <u>Ansys ModelCenter</u> and improved nodes for <u>Ansys Electronics Desktop</u> and <u>Ansys Workbench</u>.



New Partnership with Probaligence GmbH

Ansys optiSLang continues to deliver the best of design understanding and optimization algorithms through a partnership with Probaligence, which provides AI/ML technology to increase the breadth of state-of-the-art optimization. optiSLang App Generation Wizard

ptiSLang App Test Run Perform local optiSLang App Test-Run

→ Test-Run Perform local optiSLang App Test-Run

Desktop Apps from optiSLang's App Generation Wizard

Simulation and optimization experts can build automated workflows, create apps from these automations, and test their apps locally on a desktop before deploying. Since 2024 PI Probaligence became part of the CADFEM Group as partner for AI / ML Solutions

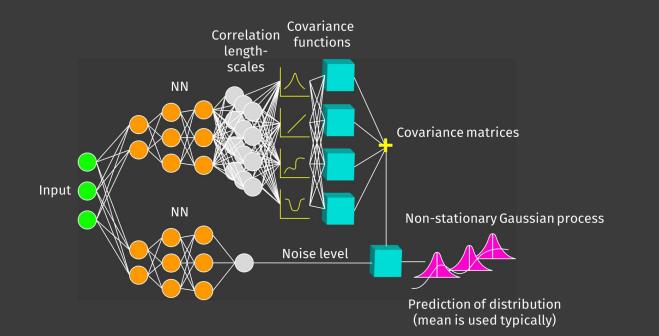
01/31/2024

Al for efficient simulation: Pl Probaligence becomes part of the CADFEM Group

CADFEM has brought PI Probaligence GmbH on board as a partner with outstanding solutions and expertise to provide customers with targeted support as they move into the world of AI.

Deep infinite mixture of Gaussian Processes (DIM-GP)

Can be applied to wide range of machine learning task with only one algorithm and no settings



- Non-stationary probabilistic model
- No settings (no expert knowledge)
- Can be used for various forms of data
- Requires little data for good results
- Automatic noise handling
- Low hardware requirements (no cloud, data remains with the customer)

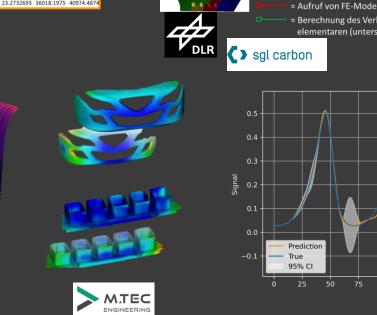
Unique combination of neural networks + Gaussian process

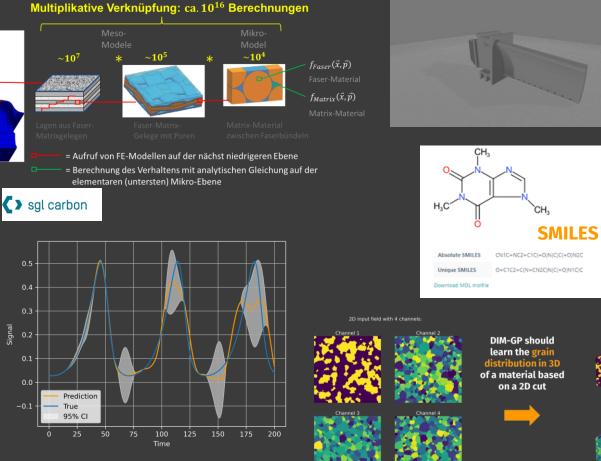
Usable data with DIM-GP

 Scalars, signals, fields, tensors, images, meshes can be used as input / partially as output:

x1	x	2	х3	x4	x5	x6	x7	y1	y2	у3
	27	90	0.5	13.5	51	ι 2	3.5	21.3277356	20759.878	29198.3713
	27.6775	123.975	0.895	13.37	49.52	1.855	3.143	23.671277	26584.1086	44739.0519
	31.7725	121.275	0.865	12.27	49.76	5 1.645	3.675	23.9304892	27406.0836	29920.9292
	28.0025	115.425	0.255	12.93	48.32	1.505	4.095	27.7219304	21129.948	28484.1233
	28.8475	125.775	0.735	12.39	48.16	5 1.635	4.151	24.0487891	23760.1779	26910.5454
	31.9675	113.175	0.995	12.03	45.68	3 2.275	3.899	25.4821736	26816.4716	28359.8146
	29.0425	129.825	0.625	12.05	50.56	5 1.665	3.913	23.1483514	25908.9534	29674.944
	28.5875	110.925	0.585	13.49	49.04	2.305	3.717	26.3814237	20551.2131	40532.4755
	29.3675	128.025	0.135	12.99	51.52	2.145	3.535	22.7670509	23111.2386	39604.8048
	27.0275	97.425	0.935	13.17	50.48	3 1.525	3.073	22.9899555	26302.2032	30536.5236
	26.2475	92.475	0.915	13.57	48.96	5 1.875	3.605	24.1296008	19847.4432	27214.5355
	31.6425	120.375	0.375	13.45	46.96	5 1.605	3.227	24.2098935	25843.3629	46968.0151
	29.1725	132.075	0.115	12.17	47.44	1.905	2.835	23.2732693	36018.1975	40974.4874

Live FEM & CFD





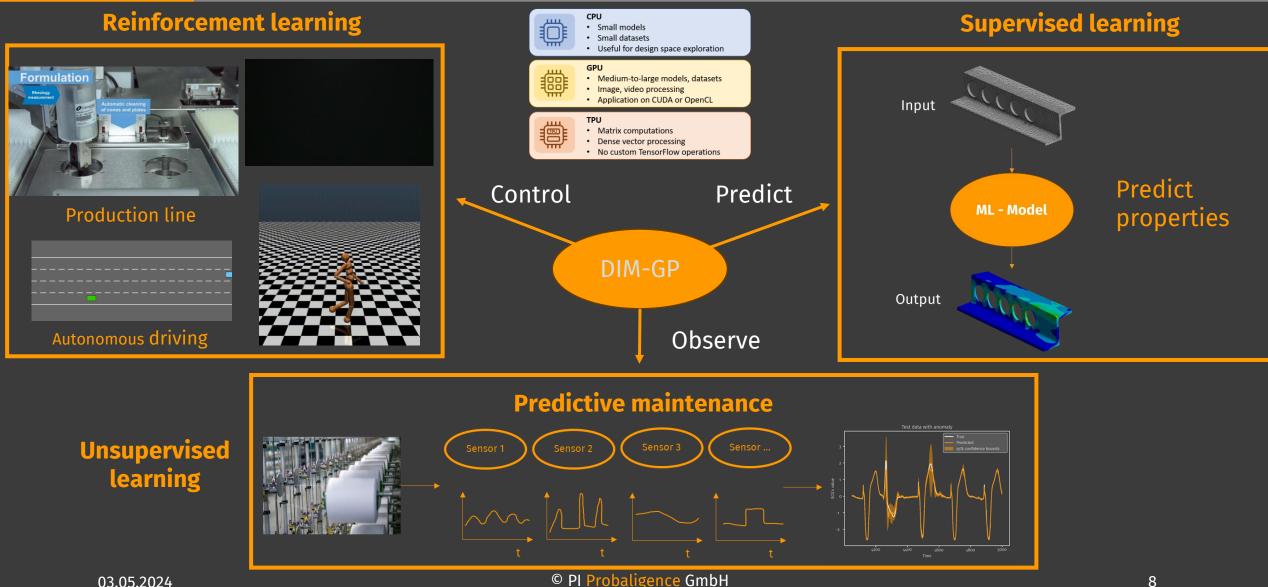
Molecule

3D output field with 4 char

information

DLR

Covering the three main ML areas with one algorithm



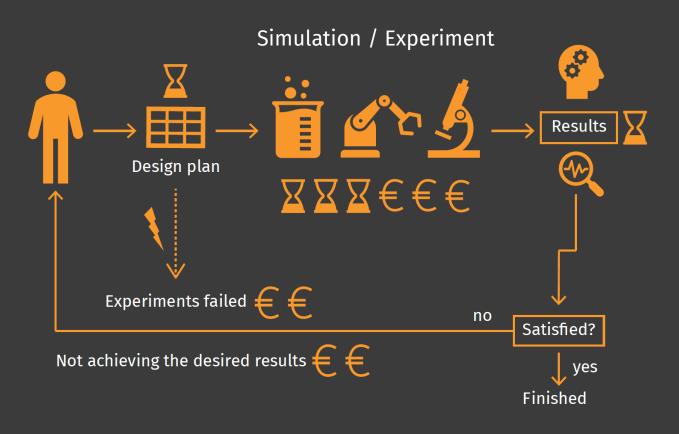
03.05.2024

How to optimize products and processes with the help of ML most efficiently

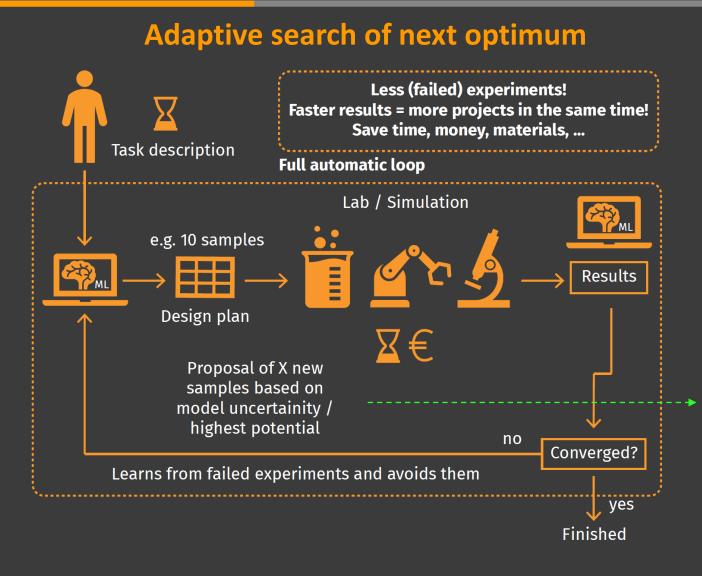
Classical data generation process

Classical way data generation:

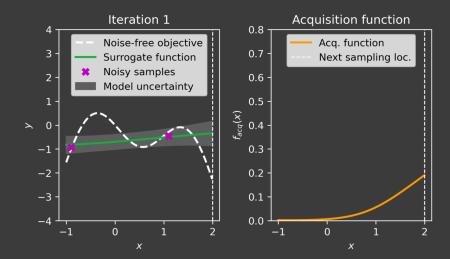
- 1. Plan all designs in advance
- 2. Do simulation / experiments
- 3. Human analyze results (model training)
- 4. If not satisfied repeat (1-3)
- 5. If model is good enough, use it in production (web app, optimization, sensitivity studies, ...)



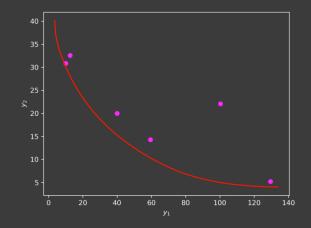
Efficient adaptive optimization / design of experiment



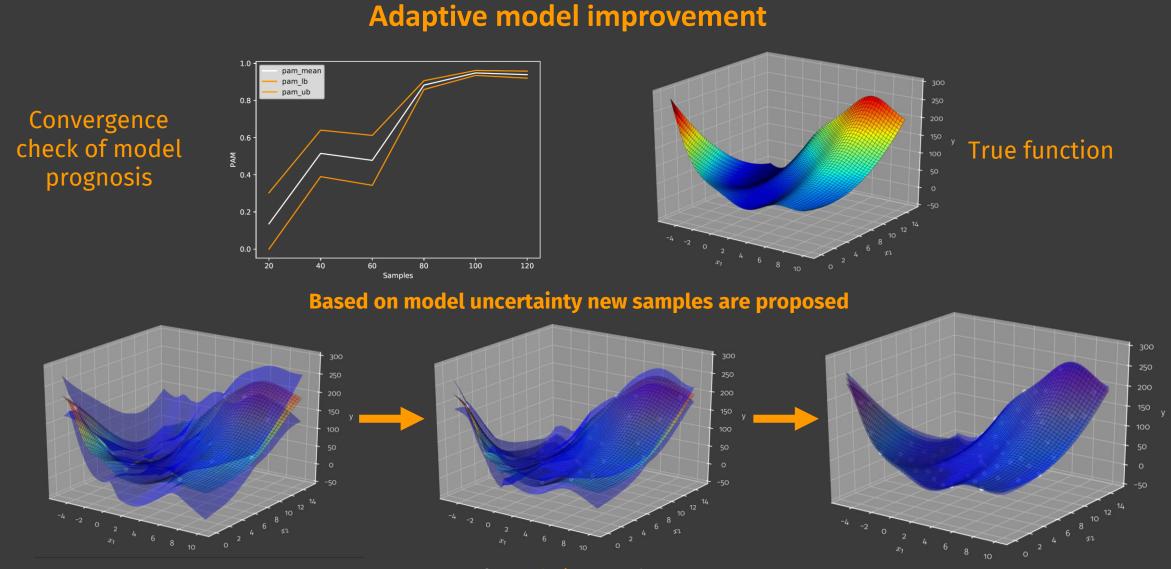
Single objective: search maximum of y



Multi-objective: search Pareto-frontier



Efficient simulation / experiment replacement:



03.05.2024

© PI Probaligence GmbH

12

BOSCH

Roland Schirrmacher, Robert Bosch GmbH

Keynote: Process and results of the One Click Optimizer benchmark at 2023 WOST Conference

Selection of Optimization Algorithms Algorithms inside optiSLang and from external sources

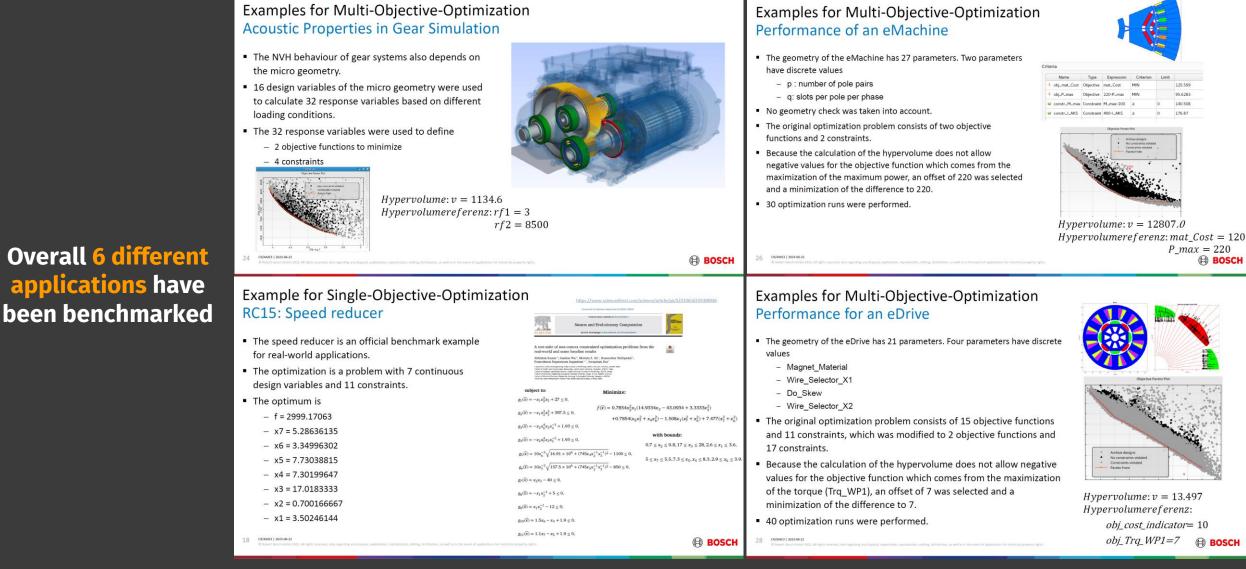
- Nature Inspired Optimization Algorithms
 - Evolutionary Algorithm (EA)
 - Particle Swarm Optimization Algorithms (PSO)
- Adaptive Optimization Algorithms
 - Adaptive Single-Objective Optimization Algorithm (ASO)
 - Adaptive Multi-Objective Optimization Algorithm (AMO)
 - Adaptive Metamodel of Optimal Prognosis (AMOP)
 Bayesian Optimization (BO)
- Hybrid Optimization Algorithms
 - One Click Optimization Algorithm (OCO)

- SIGOPT (SIGOPT)
 - Mixture from global and Bayesian optimization from the company Intel
- Black Box Optimization from Bosch (BCAI)
 - Space Filling by Sobol-Sequences
 - MBORE: Multi-objective Bayesian
 Optimization by Density-Ratio Estimation
- CR optimizer from Bosch (CROPT)
 - NSGA II algorithm
 - Special features, not suitable for that benchmark

CR/AME3 | 2023-06-22

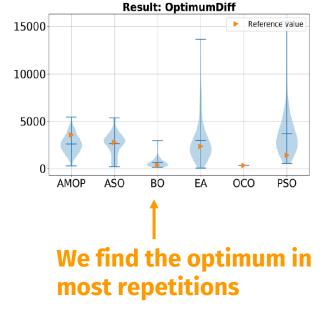
© Robert Bosch GmbH 2023. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

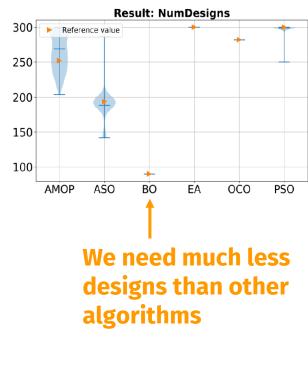
Published: https://www.ansys.com/events/wost-conference/wost-conference-presentations



Example for Single-Objective-Optimization RC18: Results – setting_300_90_300_400

- The best optimizer is again BO.
- The OCO performs much better with the double number of designs (200 → 400).
- All other algorithms do not find the optimum well.





© Robert Bosch GmbH 2023. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Benchmark of One-Click-Optimizer Summary

In 5 out of 6 benchmarks our Bayesian optimization algorithm performed best considering:

- Needed simulation runs
- Reproducibility
- Optimal result

- An automatic workflow could be established to benchmark different optimization algorithms.
- The integration of optiSLang-external algorithms is quite difficult. Several interfaces in Python were necessary to create the required files. Sometimes the OutputSlots like Ocriteria were used and sometimes the export of parameters/criteria via .csv format. It could be clarified whether a custom integration is a better approach.
- The adaptive and hybrid optimization algorithms showed the best performance. Often, the PI-BO showed the best results, but requires a long computation time. Perhaps the integration of PI-BO in optiSLang could be improved e.g. parallel training of criteria.
- The nature inspired optimization algorithms EA & PSO showed similar results, but they need much more designs for a good solution.
- The One Click Optimizer OCO does not show the best solution for all applications, but the OCO belongs to the better optimization algorithms.
- There are ideas to couple several methods sequentially to get better optimization results.

CR/AME3 | 2023-06-22

Example from chemistry – metalic coating development

In total 17 parameters

- 32 possible raw materials to choose from raw materials types (binder, addtives, flow Additives, ...)
- Concentrations
- Process parameters (spray parameter, speed mixer, ...)

Total 5 adaptation with 3 formulations = 15 formulations

Final adaptation

Is it possible to be even more ressource efficient?

Multi-fidelity modeling & optimization

What is multi-fidelity data?

Low cost ٠

•

•

- High cost

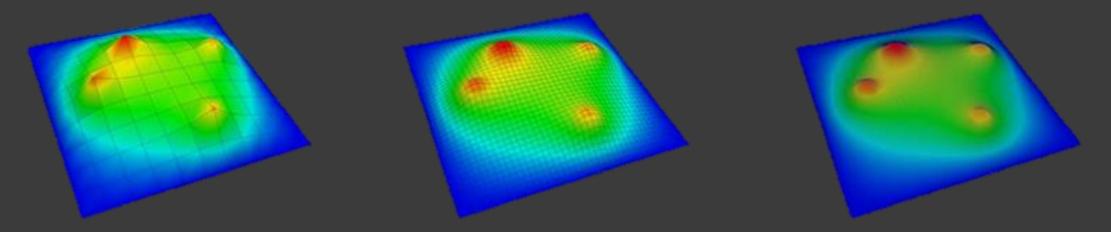
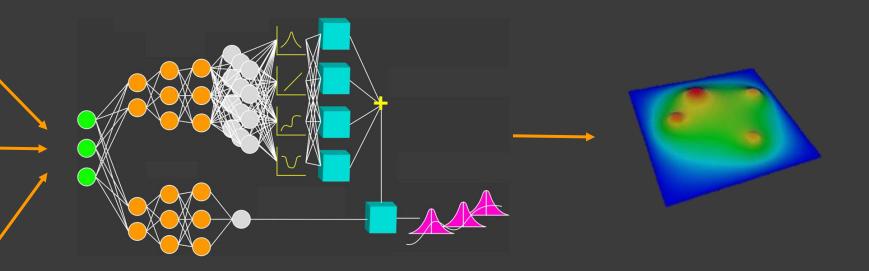


Image source: Aydin, Roland Can, Fabian Albert Braeu, and Christian Johannes Cyron. "General multi-fidelity framework for training artificial neural networks with computational models." Frontiers in Materials 6 (2019): 61.

What is multi-fidelity modling?

Model utilizes information from all fidelity sources and predicts in the highest fidelity quality



Advantages:

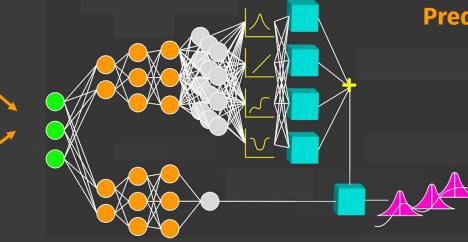
- Less expensive data points required
- Calibration between simulation and real experiment

What is multi-fidelity modling?

Real experimental data

Model utilizes information from all fidelity sources and predicts in the highest fidelity quality

Simulation data

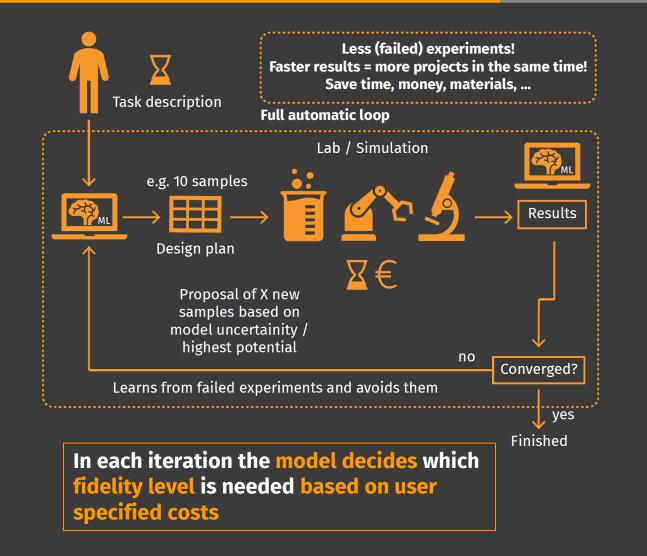


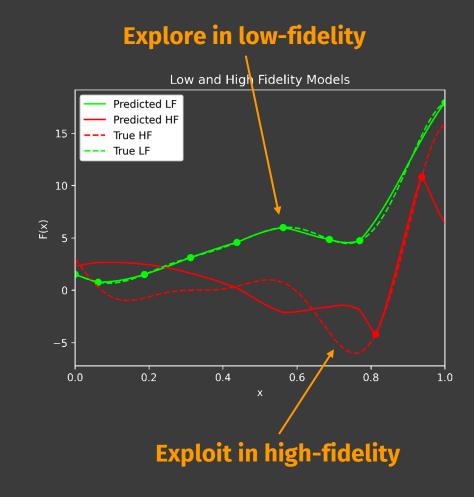
Prediction in quality of real experiment

Advantages:

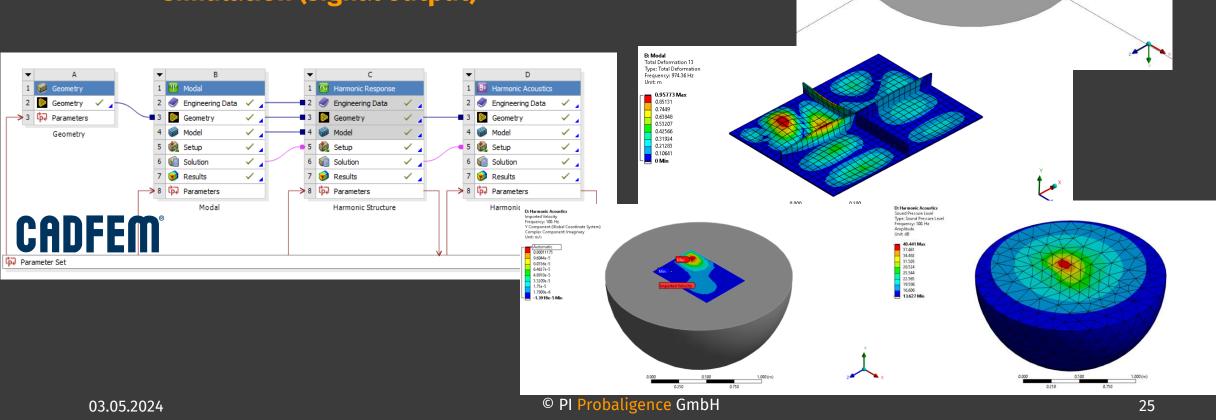
- Less expensive data points required
- Calibration between simulation and real experiment

Multi-fidelity optimization





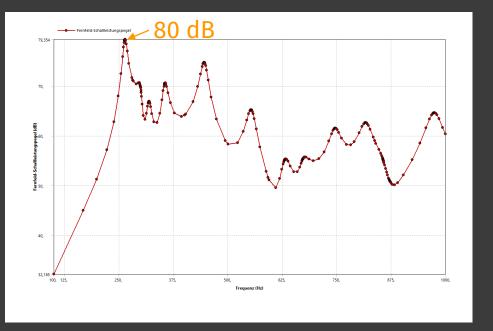
- Two use cases:
 - 1 minimize maximum of the far-field sound power level (scalar output)
 - Build global accurate model to replace simulation (signal output)



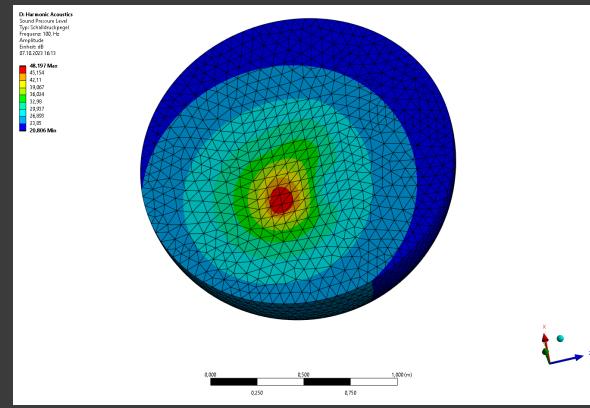
Input parameter	Comment
R_frac	Fraction of largest acoustic wavelength
EPW	Elements per wavelength
h_stiff	Height of the stiffeners
t	Thickness of plate and stiffeners
W	Width of the plate
l	Length of plate
Point mass	Point mass at force excitation node
OffsetNodeX	Coordinate of force excitation node
OffsetNodeZ	Coordinate of force excitation node

Parameters which controll the accuracy of the simulation (In this example only EPW was used)

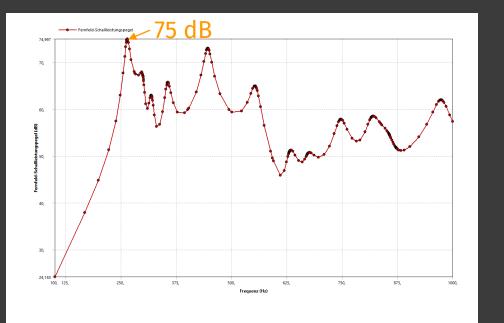
 Reference accuracy with EPW = 6 & R_frac = 0.25 -> Simulation time 45 minutes



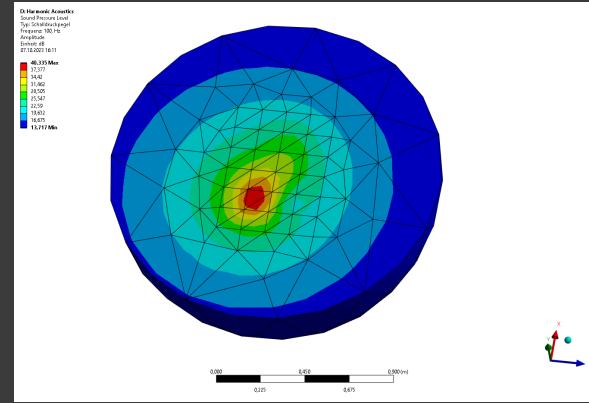
Output to be learned up to 400 discretization points



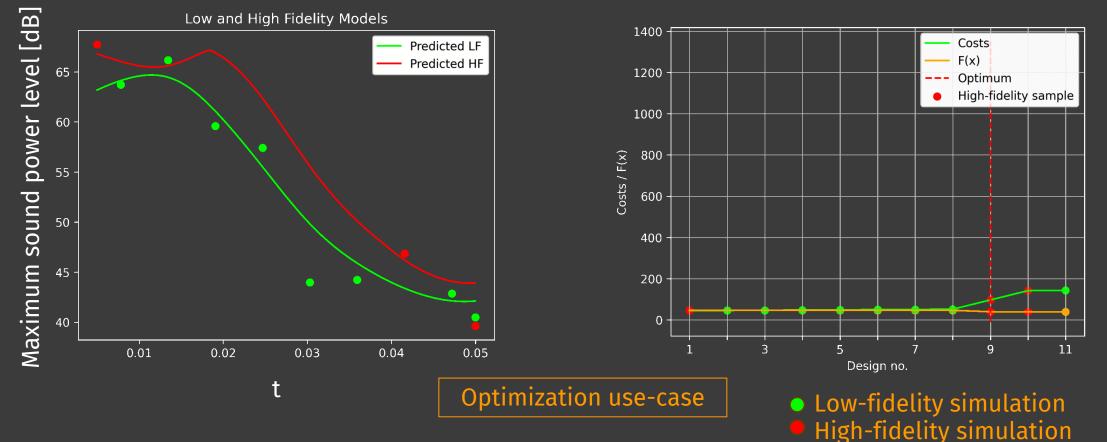
 Reference accuracy with EPW = 0.5 & R_frac = 0.25 -> Simulation time 1 minutes



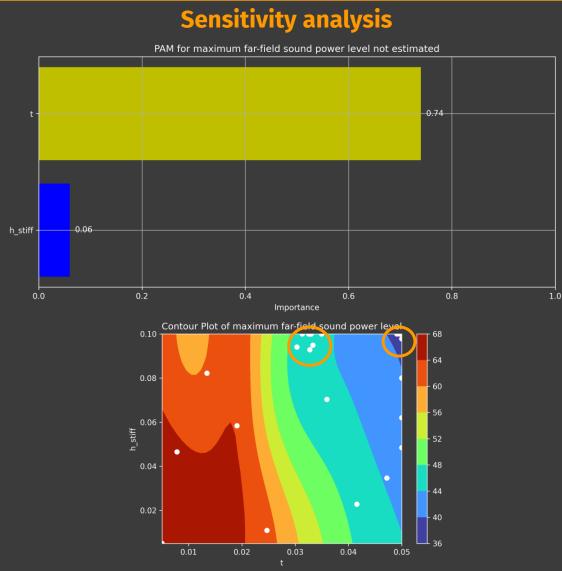
Output to be learned up to 400 discretization points



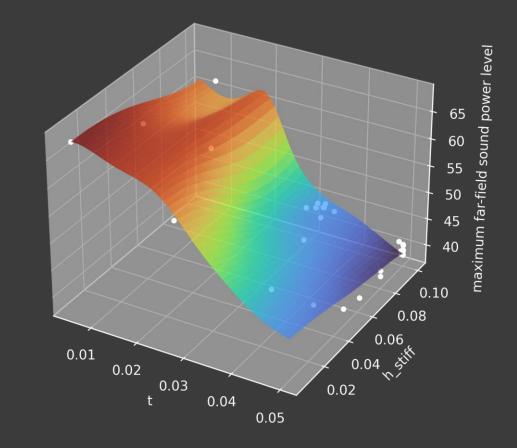
• The used costs for the multi-fidelity optimization are the simulation times 1 minute & 45 minutes



First 10 designs are start samples



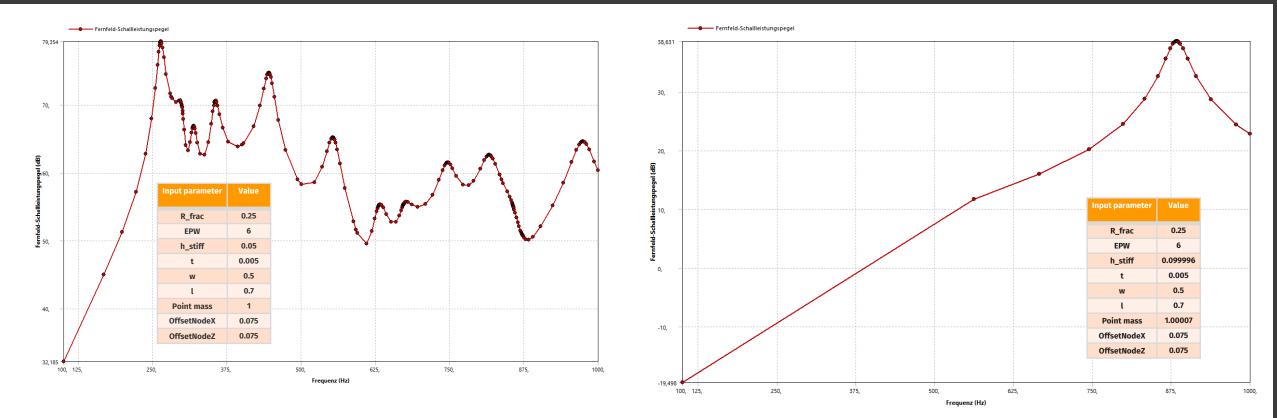
Learned model for maximum far-field sound power level

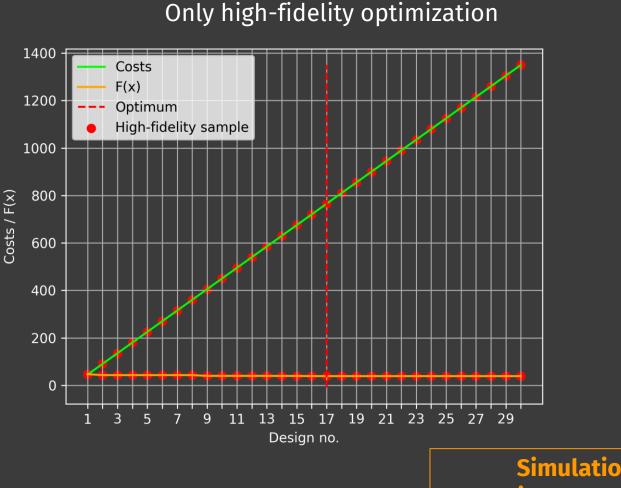


© PI Probaligence GmbH

Reference design maximum: **79 dB**

Optimized design maximum: 39 dB



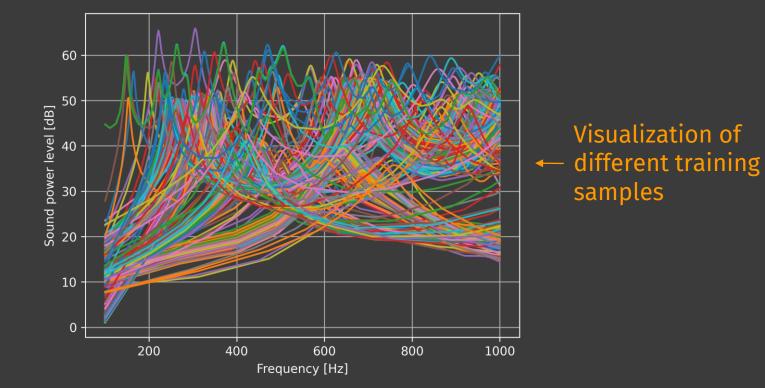


Multi-fidelity optimization

Simulationtime: 1350 minutes vs. 382 minutes 353% faster

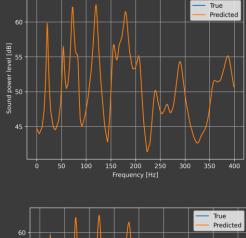
Low-fidelity simulationHigh-fidelity simulation

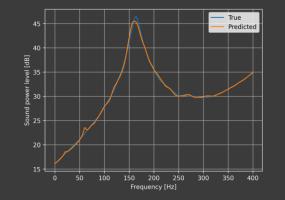
- Global modeling took 310 low-fidelity and 39 high-fidelity calculations to obtain a good model
- Since the output consists of 400 discrete points a larger number of training samples is needed

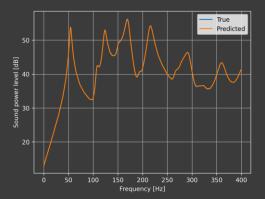


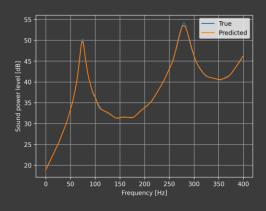
Global model use-case to replace simulation

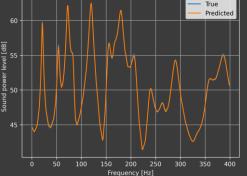
Results on test data

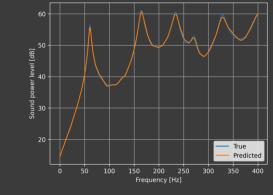


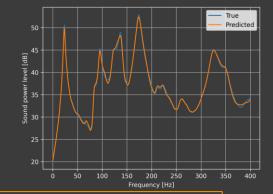


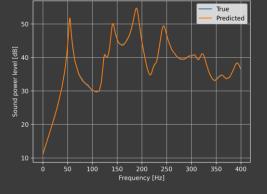








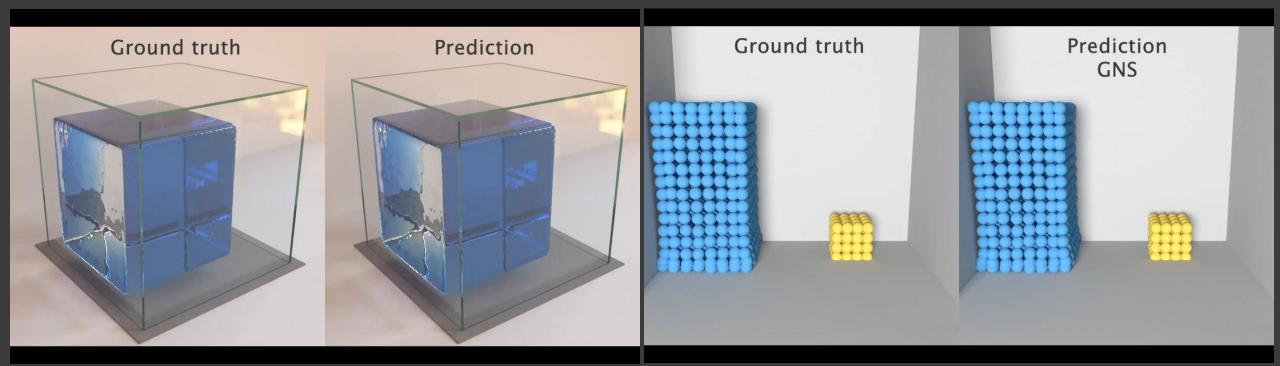




Simulationtime: 15975 minutes vs. 2065 minutes 773% faster

2D / 3D Simulation data of parametrized and nonparametrized geometries

Complex physics (Google Deepmind 2020)

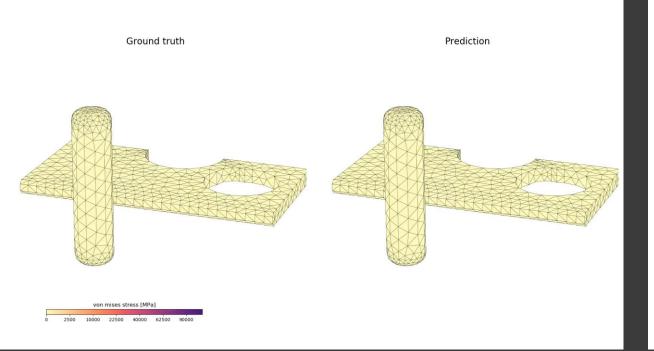


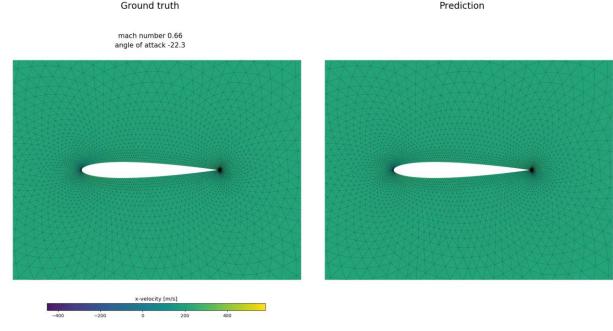
- 14k particles
- 800 steps

- 1k particles
- 150 steps

Sanchez-Gonzalez, Alvaro, et al. "Learning to simulate complex physics with graph networks." International conference on machine learning. PMLR, 2020.

3D FEM / 2D CFD (Google Deepmind 2021)





- 10 Million training steps on 1,000 samples
- 1,271 nodes (avg.) / 400 time steps
- 1 NVIDIA v100 GPU training time >= 102 hours
- 1 CPU (8 cores) training time >= 1330 hours
- RMSE 1-step prediction disp.: 0.25 x 10e-3

- 10 Million training steps on 1,000 samples
- 5,233 nodes / 600 time steps
- 1 NVIDIA v100 GPU training time >= 66 hours
- 1 CPU (8 cores) training time >= 478 hours
- RMSE 1-step prediction: 0.314

*T.Pfaff, M. Fortunato, A. Sanchez-Gonzalez, & P. Battaglia (2021). Learning Mesh-Based Simulation with Graph Networks. In International Conference on Learning Representations.

© PI Probaligence GmbH

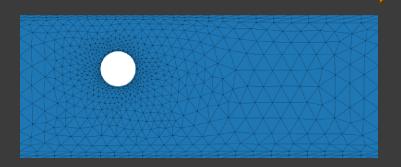
Geometric Deep Infinite Mixture of Gaussian Processes

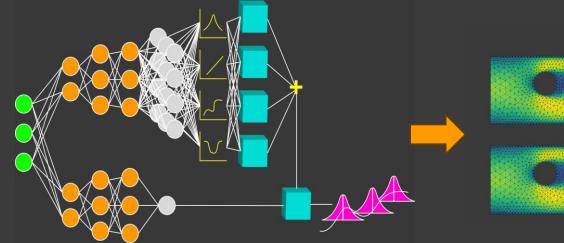
Input

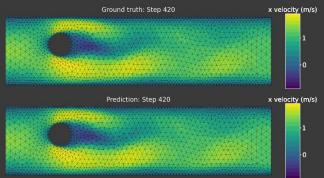
Geometric DIM-GP

ML-based predictions of (transient) FEM / CFD results

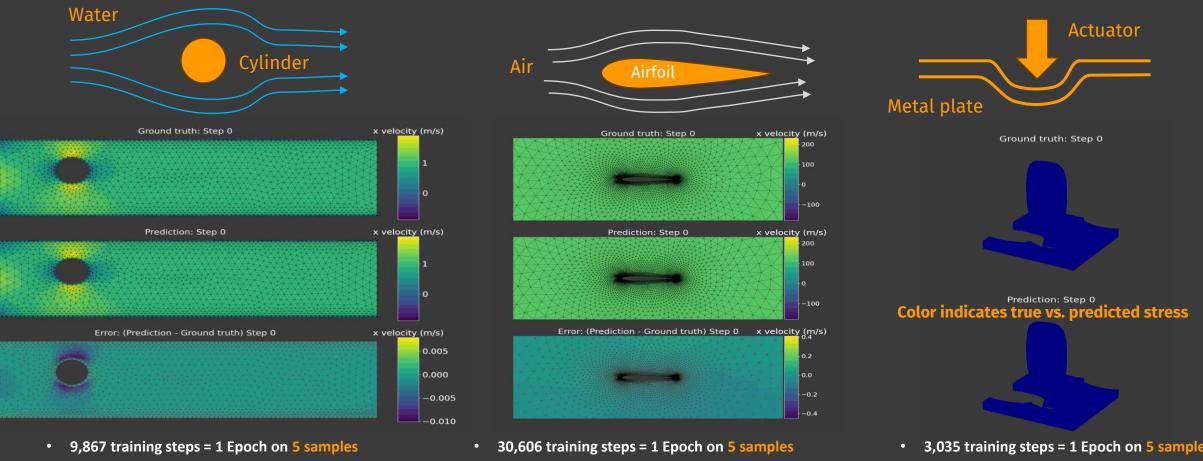
Mesh node positions + initial node features / boundary conditions (e.g. stress, velocity, ...) + optional global features







2D / 3D transient FEM / CFD



- 1 NVIDIA 4090 GPU training time 5 minutes
- 1 CPU (8 cores) training time 12 minutes
- RMSE 1-step prediction: 1.54 x 10e-3

03.05.2024

RMSE 1-step prediction: 0.05

• 1 CPU (8 cores) training time 32 minutes

1 NVIDIA 4090 GPU training time 14 minutes

© PI Probaligence GmbH

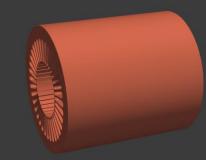
- 3,035 training steps = 1 Epoch on 5 samples
- 1 NVIDIA 4090 GPU training time 2 minutes
- 1 CPU (8 cores) training time 7 minutes
- RMSE 1-step prediction: 0.55 x 10e-4

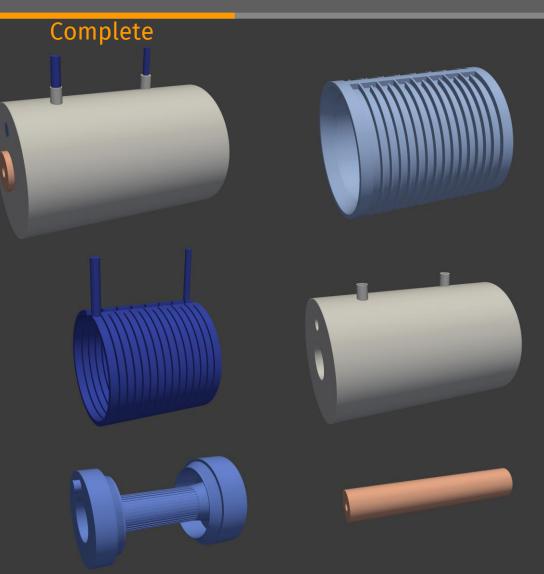
39

Test data

E-Motor Cooling

- Temperature prediction for a E-Motor based on different cooling channel geometries
- 5,366,013 nodes / 2,817,502 elements
- 34 training samples / 4 test samples
- Field input parameters:
 - Node positions (only the non-parameterized geometry.
- Field output parameters:
 - Temperature
- Training time approx. 5-6 h on a single (cheap) GPU





Supervised learning: E-Motor Cooling



© PI Probaligence GmbH

Crash-test

- 1 simulation consists of 50 time steps, 283,791 nodes per time step → 14,189,550 nodes per simulation
- Training data: 32 simulation / Test data: 5 simulation
- Training time of DIM-GP: 21 seconds
- Changing input: thickness of the shells

DIM-GP Prediction

Crash simulation

17.5 s (rolling prediction) or < 1 s if training done with time step as input

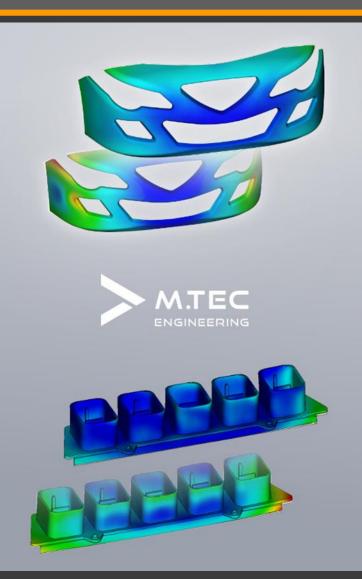
0.5 h (20 cores CPU)

Mean absolute percentage error over all 5 test designs over all 50 time steps over all nodes:

5,73%

© PI Probaligence GmbH

Al-based warpage optimization of plastic components



Automotive Front Bumper

 overall warpage reduced from 8.0 mm to 4.4 mm (45% improvement)

High Precision Connector

 overall warpage reduced from 0.46 mm to 0.29 mm (36% improvement)

"For over 30 years, our customers have been asking for the perfect parameter set for their plastic component. Thanks to new mathematical methods, we have now created a development tool that calculates this parameter set."

Stefan Vogler Team Manager Simulation & Calculation, M.TEC ENGINEERING GmbH

Al-based warpage & process optimization

Support structure of the vehicle interior

- sample time 80% shorter
- greatly reduced material and energy consumption
- elimination of tool changes

03.05.2024

Multiscale simulation (ongoing research project with DLR & SGL Carbon)

• Macro scale FEM:

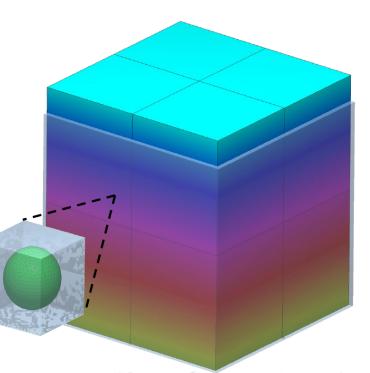
- Deformation
- Temperature
- Micro scale FEM:
 - Material tensor
- Model learns to predict the material tensor based on temperature from macro scale
- Macro and micro scale should be replaced by ML model to speed up calculations
- Trained model on cube

AP2.1 Parametrische FE-Modelle auf allen Ebenen Beispielsimulation Input KI-Modell

Materialtensor

 Als Datenbasis wird der Materialtensor (Output) gewählt, welche von der Temperatur (Input) abhängig ist.

$\overline{\mathbb{C}}_2^{238} =$						-1.5958
	76592.4	169510	77411.8	-12.471	5.51499	8.43605
	77392.1	77411.8	165837	15.0372	26.7541	-1.16823
	-20.0479	-12.4(1	15.0372	40404.4	13.7983	15.4344
						-1.45661
	-1.5958	8.43605	-1.16823	15.4344	-1.45661	44701.2

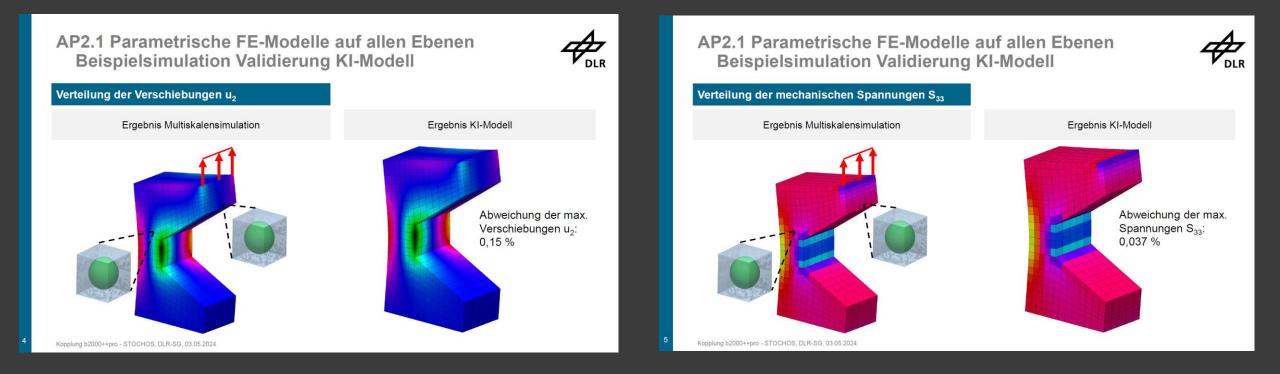


Simulationsergebnis Multiskalensimulation [DLR-SG]

Kopplung b2000++pro - STOCHOS, DLR-SG, 29.04.2024

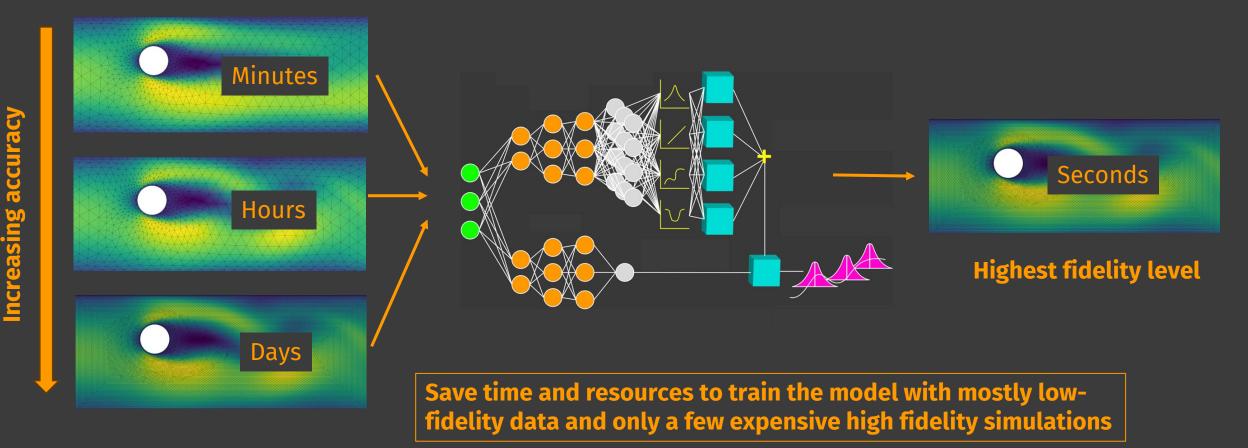
Multiscale simulation (ongoing research project with DLR & SGL Carbon)

• Trained model on cube has been used on a c-beam geometry



Combination of multi-fidelity + 2D / 3D Simulation data

Model utilizes information from all fidelity sources and predicts in the highest fidelity quality



Simple to use

- DIM-GP has no settings except a few options which might speed things up or for noisy data handling
- It is practically independent of the use case, simply enter data and start model training
- In Python it's as easy as this:

```
from stochos.dimgp import dimgp_regr
import numpy as np
X = np.load("mesh_boundary.csv")
Y = np.load("node_results.csv") Placeholder for loading & preprocessing training data
model = dimgp_regr()
model.fit(X, Y, batch_size=500) Initial model and just pass training data no settings needed
Y_pred = model.predict(X) Predict new data
```

Key findings

- Adaptive data generation for training ML models is always preferable to a large Design of Experiment (DoE)
- If simulation / experiment is too complex / expensive, direct ML-driven optimization can be an alternative that already delivers very good results with less than 20 designs (even for high-dimensional problems)
- Multi-fidelity modeling / optimization allows to generate data even more efficiently because even fewer resources have to be used, such as simulation times, which can be extremely reduced
- It is also suitable for simulation calibration (combination of simulation and real experiment), especially if precise simulation calibration is not possible
- DIM-GP is a ML algorithm for domain experts of different fields to use this potential without the need of most of the ML-releated expert knowledge and it can be used in nearly all ML-related areas
- No cloud computing / no expensive hardware / no large amounts of data required for training
- Additional tools for data generation / optimization / sensitivity analysis all in one package everything perfectly matched
- Easy integration in existing workflow since it's a Python library

Contact

Dr.-Ing. Kevin Cremanns <u>kevin.cremanns@probaligence.de</u> www.probaligence.de

CADFEMGROUP